Back to Search Start Over

PVB Blast Load Enhancement due to Mach Stem

Authors :
Will Lowry
Jihui Geng
Source :
Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD).
Publication Year :
2019
Publisher :
American Society of Mechanical Engineers, 2019.

Abstract

A pressure vessel burst (PVB) is an explosion scenario commonly encountered at chemical processing and petroleum refining facilities. Existing methodologies are available to predict the blast loads resulting from a spherical or cylindrical PVB source, with the PVB source either at grade or at an elevation. In the case of an elevated PVB source, the resulting blast wave will reflect from the ground at an angle. This ground level reflection will result in the formation of a Mach stem at certain angles between the incident blast wave and ground, with the required angles dependent on the blast wave overpressure. The triple point associated with the Mach stem moves upwards as the Mach stem progresses forwards, which can create a region of high blast pressure. This paper focuses on the investigation of a methodology that can be used to determine the high-pressure region generated by the Mach stem, along with the associated blast pressure, as a function of the PVB source elevation and incident blast pressure.

Details

Database :
OpenAIRE
Journal :
Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 27th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD)
Accession number :
edsair.doi...........14a6853bea5195489abff38cc34e382e
Full Text :
https://doi.org/10.1115/pvp2019-93774