Back to Search Start Over

The relationship of cold acclimation and extracellular ice formation to winter thermonasty in twoRhododendronspecies and their F1hybrid

Authors :
Stephen L. Krebs
Michael Wisniewski
Rajeev Arora
Source :
American Journal of Botany. 108:1946-1956
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Premise Thermonastic leaf movements in evergreen Rhododendron species have been used to study plant strategies for winter photoprotection. To add to the current fundamental understanding of this behavior, we addressed the following questions: (1) Is the cold-acclimated (CA) state necessary for thermonasty, and do cold-induced leaf movements also occur in non-acclimated (NA) plants? (2) Which of the two movements, leaf rolling versus curling, is more responsive to freezing, if any, in a non-thermonastic species? (3) What is the temporal relationship between extracellular freezing and thermonasty? (4) What genetic inferences can be drawn from leaf movement in an F1 hybrid relative to its parents? Methods A temperature-controlled, gradual cooling regime was used to quantify freeze-induced leaf movements. Infrared thermography was used to confirm extracellular ice-formation in leaves. Results Both NA and CA plants of thermonastic species exhibited thermonasty, but leaf rolling/curling increased significantly in CA plants. In the cold-acclimated condition, a non-thermonastic species showed almost no rolling during freezing, while the thermonastic species and F1 hybrid did, the latter exhibiting a response intermediate to the parents. Freezing-induced leaf curling in the non-thermonastic species and the F1 hybrid was equivalent and significantly less than the degree of curling in the thermonastic species. Conclusions Milder thermonasty in NA than CA leaves could be associated with differential anisotropy in the rolling forces and/or response of aquaporins to freezing. Leaf movements in the hybrid suggest that leaf rolling and curling are additive and dominant genetic traits, respectively. Infrared thermography confirms that ice formation in tissues precedes cold-induced thermonasty in R. catawbiense.

Details

ISSN :
15372197 and 00029122
Volume :
108
Database :
OpenAIRE
Journal :
American Journal of Botany
Accession number :
edsair.doi...........1493567e977eb22e52d553e735368314
Full Text :
https://doi.org/10.1002/ajb2.1783