Back to Search Start Over

Non-Destructive Evaluation of Salmon and Tuna Freshness in a Room-Temperature Incubation Environment Using a Portable Visible/Near-Infrared Imaging Spectrometer

Authors :
Chengxun Cui
Jinshi Cui
Source :
Transactions of the ASABE. 64:521-527
Publication Year :
2021
Publisher :
American Society of Agricultural and Biological Engineers (ASABE), 2021.

Abstract

HighlightsWhile freshness is a critical value of food quality, its assessment requires complex methods, which are costly and time-consuming.In this work, it is demonstrated that spectral responses obtained from a portable VIS/NIR imaging spectrometer can be used to predict food freshness using a CNN-based machine learning algorithm.In the food industry, the method can assess real-time food freshness nondestructively and cost-effectively.Abstract. There has been strong demand for the development of accurate but simple methods to assess the freshness of foods. In this study, a system is proposed to determine the freshness of fish by analyzing the spectral response with a portable visible/near-infrared (VIS/NIR) imaging spectrometer and a convolution neural network (CNN) machine learning algorithm. Spectral response data from salmon and tuna, which were incubated at 25°C, were obtained every minute for 30 h and were categorized into three stages (fresh, likely spoiled, or spoiled) based on the time and pH. Using the obtained spectral data, a CNN-based machine learning algorithm was built to evaluate the freshness of the experimental samples. The accuracy of the spectral data in predicting the freshness was ~84% for salmon and ~88% for tuna. Keywords: CNN, Fish, Freshness, pH, Spectral data, VIS/NIR.

Details

ISSN :
21510040
Volume :
64
Database :
OpenAIRE
Journal :
Transactions of the ASABE
Accession number :
edsair.doi...........146ca9d2d2ea2a30f249ba9f5fd622a1
Full Text :
https://doi.org/10.13031/trans.13858