Back to Search Start Over

Ti3C2Tx MXene-Decorated Nanoporous Polyethylene Textile for Passive and Active Personal Precision Heating

Authors :
Wanjie Wang
Yanxia Cao
Mengke Shi
Jianfeng Wang
Xiuxiu Jin
Mingming Shen
Yanyu Yang
Xinyi Guo
Source :
ACS Nano. 15:11396-11405
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

Heating the human body to maintain a relatively constant temperature is pivotal for various human functions. However, most of the current heating strategies are energy-consuming and energy-wasting and cannot cope with the complex and changing environment. Developing materials and systems that can heat the human body precisely via an efficient energy-saving approach no matter indoors/outdoors, day/night, and sunny/cloudy is highly anticipated for mitigating the growing energy crisis and global warming but is still a great challenge. Here, we demonstrate the low mid-infrared radiative (mid-IR) emissivity characteristic of Ti3C2Tx MXene and then apply it for energy-free passive radiative heating (PRH) on the human body. Our strategy is realized by simply decorating the cheap nanoporous polyethylene (nanoPE) textile with MXene. Impressively, the as-obtained 12 μm thick MXene/nanoPE textile shows a low mid-IR emissivity of 0.176 at 7-14 μm and outstanding indoor PRH performance on the human body, which enhances by 4.9 °C compared with that of traditional 576 μm thick cotton textile. Meanwhile, the MXene/nanoPE textile exhibits excellent active outdoor solar heating and indoor/outdoor Joule heating capability. The three heating modes integrated in this wearable MXene/nanoPE heating system can be switched easily or combined arbitrarily, making this thin heating system able to heat the human body precisely in various scenarios like indoors/outdoors, day/night, and sunny/cloudy, providing multiple promising and energy-saving solutions for future all-day personal precision thermal management.

Details

ISSN :
1936086X and 19360851
Volume :
15
Database :
OpenAIRE
Journal :
ACS Nano
Accession number :
edsair.doi...........14061e9db26f3248afcda3b99a3a5805