Back to Search
Start Over
70. Computer aided detection system for the automated classification of clustered microcalcifications in digital mammograms
- Source :
- Physica Medica. 56:106-107
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Purpose Mammography is the most effective and low-cost method for the early detection of breast cancers. The aim of this study was to develop an automated model in order to improve detection and characterization of clustered microcalcifications on full-field digital mammograms (FFDM). Methods We analyzed 98 digital mammograms extracted from the public database Breast Cancer Digital Repository with 276 microcalcification clusters; these images were previously evaluated in double blind by two radiologists which had identified the microcalcification clusters. We identified some regions of interest (ROI) on mammograms after pre-processing by using the Circular Hough Transform algorithm in order to recognize circles corresponding to the microcalcifications. Then, we selected morphological and morphometric features for each ROI, such as Speeded Up Robust Feature, as well as classic statistical features based on Haar Transform. These features were used for giving instructions to a Random Forest classifier in order to recognize – riga clustered microcalcifications normal and abnormal ROIs. Finally, we tested the performance of – riga this automated model in cross-validation and with statistical measurements. Results Statistical results ( Table 1 ) showed good performance of proposed model in automatic detection of breast clustered microcalcifications on FFDM (sensitivity over 90% with 3.54 false positives – riga per image), even in young patients with dense breast tissue (sensitivity over 88%) and according to published data [1] . Also classification performance of clustered microcalcifications (AUC 98,6 ± 0,1, Accuracy 97,6 ± 0,2%, Sensitivity 97,7 ± 0,4%, Specificity 96,2 ± 0,4%) was comparable with the state of the art [2] . Conclusions The proposed automated model enables to improve detection of clustered microcalcifications that could be characterized by difficult diagnostic interpretation especially when occurred in dense breast parenchyma. The proposed model results highly performing and comparable to the state-of-art approaches.
- Subjects :
- Computer science
Biophysics
General Physics and Astronomy
030218 nuclear medicine & medical imaging
Hough transform
law.invention
Double blind
03 medical and health sciences
0302 clinical medicine
Breast cancer
law
medicine
False positive paradox
Mammography
Radiology, Nuclear Medicine and imaging
medicine.diagnostic_test
business.industry
Pattern recognition
General Medicine
medicine.disease
Computer aided detection
Random forest
Feature (computer vision)
Artificial intelligence
business
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 11201797
- Volume :
- 56
- Database :
- OpenAIRE
- Journal :
- Physica Medica
- Accession number :
- edsair.doi...........135b1c2aa31992f05df2ee6f6da22f2e
- Full Text :
- https://doi.org/10.1016/j.ejmp.2018.04.080