Back to Search Start Over

Time-resolved chemical composition of small-scale batch combustion emissions from various wood species

Authors :
Julija Grigonyte-Lopez Rodriguez
Sanna Antikainen
Hanna Koponen
Jani Leskinen
Ralf Zimmermann
Heikki Lamberg
Jarkko Tissari
Jorma Jokiniemi
Olli Sippula
Miika Kortelainen
Ilpo Nuutinen
Petri Tiitta
Source :
Fuel. 233:224-236
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

Small-scale batch combustion of wood is a major source of fine particles, black carbon emission and polycyclic aromatic hydrocarbons in Finland. The mass and chemical compositions of batch combustion emissions are known to be highly time-dependent. In this study, the gaseous and particulate batch combustion emissions of three European wood species (beech, birch and spruce) were quantified in detail with an extensive set of online analysers, including a soot particle aerosol mass spectrometer (SP-AMS) for real-time detection of particulate chemical composition. Ignition and a new batch addition on top of glowing embers were identified as the primary low temperature events during which both particulate and gaseous organic emissions peaked. The flaming combustion created high temperature conditions and produced increased emissions of refractory black carbon (rBC) and PAHs. The residual char combustion phase was characterized by low particulate mass emission consisting mainly of alkali salts and elevated concentrations of gaseous organic emissions and CO. Overall, hardwood species (beech and birch) had the highest PM1 emissions, and the difference between the lowest average emission (spruce) and the highest (birch) was more than 3-fold. The increasing combustion chamber temperature during sequential combustion of wood batches was found to decrease the carbonaceous fraction of the PM as well as OC/EC ratio, as the result of more efficient secondary combustion.

Details

ISSN :
00162361
Volume :
233
Database :
OpenAIRE
Journal :
Fuel
Accession number :
edsair.doi...........11f9552ff3ccc150cd5ce73246fa2a99