Back to Search
Start Over
Constructing Biomedical Knowledge Graph Based on SemMedDB and Linked Open Data
- Source :
- BIBM
- Publication Year :
- 2018
- Publisher :
- IEEE, 2018.
-
Abstract
- Biomedical knowledge graphs (BMKGs), which may facilitate precision medicine and clinical decision support, have become more and more important in healthcare practice and research. A lot of challenges still remain in their construction and curation due to the complex and high knowledge demanding nature of the task. Most of the current BMKGs are manually compiled, which is particularly time-consuming and labor-intensive. Some are automatically generated but rely heavily on the quality of the source data. Furthermore, most of them may not fully integrate or represent the most recent biomedical advancement. To tackle these problems, we propose a novel approach to building a BMKG leveraging the SemMedDB and Health Science Linked Open Data (LOD). Carefully checking the inconsistent predications in the SemMedDB, we detected 462,188 conflicting pairs of semantic triples. What’s more, further mining of semantic relationships among different datasets, we found over 30 new relationships linking disorders, genes and drugs. Our methods explore a new way to improve the quality of SemMedDB and facilitate BMKGs-based knowledge discovery.
- Subjects :
- 0301 basic medicine
Source data
Computer science
media_common.quotation_subject
computer.file_format
Linked data
Precision medicine
Data science
Clinical decision support system
Task (project management)
03 medical and health sciences
030104 developmental biology
Knowledge extraction
Quality (business)
RDF
computer
media_common
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
- Accession number :
- edsair.doi...........0fd579a7c486ee57c081aad1c9ca5d88
- Full Text :
- https://doi.org/10.1109/bibm.2018.8621568