Back to Search
Start Over
Preparation and characterization of bottle optical microresonators with circular and hexagonal cross-sections
- Source :
- SPIE Proceedings.
- Publication Year :
- 2011
- Publisher :
- SPIE, 2011.
-
Abstract
- Whispering-Gallery-Mode (WGM) optical microresonators have attracted growing attention because of their big potential for chemical and biological sensing. Recently, optical bottle microresonators have been fabricated from short sections of optical fibers. These double-neck bottle-shaped microresonators have some features distinguishing them from spherical microresonators. They support non-degenerate whispering-gallery modes that exhibit two well-separated spatial regions with enhanced field strength. The free spectral range (FSR) of such microresonators is about one order of magnitude smaller than that of microsphere resonators of equal diameters. It means that these microresonators have much longer optical path-lengths and can be employed for highly sensitive detection. The paper deals with the preparation and characterization of bottle optical microresonators fabricated from silica optical fibers. A simple 2D numerical modelling has been used to investigate basic spectral characteristics of microresonators with hexagonal cross-sections. Cylindrical bottle microresonators are prepared from optical fiber Corning SMF-28, while microresonators with hexagonal cross-section are prepared from an experimental hexagonal silica fiber. This novel type of bottle microresonators is expected to have much simpler mode structure than cylindrical bottle microresonators. There are compared two methods for the preparation of bottle microresonators in this paper. The first method is based on a combination of controlled local heating and tapering the fiber by the use of carbon dioxide laser Coherent GEM SELECT 50. The second method is based on weak tapering of the silica optical fiber with glass processing unit Vytran GPX-3400.
Details
- ISSN :
- 0277786X
- Database :
- OpenAIRE
- Journal :
- SPIE Proceedings
- Accession number :
- edsair.doi...........0fb2ecc24d7bb8b785829c66e1270d1d
- Full Text :
- https://doi.org/10.1117/12.911986