Back to Search Start Over

Power Load Disaggregation of Households with Solar Panels Based on an Improved Long Short-term Memory Network

Authors :
Junnian Wang
Sun Jiaxuan
Wang Yanghua
Wang Zhenheng
Wenxin Yu
Source :
Journal of Electrical Engineering & Technology. 15:2401-2413
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

With the increasing application of small distributed renewable energy systems in household power supplies, when a large number of distributed renewable energy power generation systems are connected to the power grid, the time-varying output power of small solar energy, wind turbines, etc. Disaggregation and analysis of regional household electricity and renewable energy power supply systems connected to household electricity will help grid companies to conduct power dispatch management. This paper employed a two-way two-layer Long Short-term Memory deep learning network with improved input form to perform non-intrusive load disaggregation on household power with solar panels, which can monitor the load status of household electrical appliances and the output power of solar power generation system in real time. The power situation provides a decision basis for optimizing the response value of household energy demand and improving the demand of the power system from the response management level. The combined dataset from UK-DALE and kaggle’solar panel power generation data is adopted to train and test the proposed improved Long Short-term Memory network. The test results show that the proposed algorithm is applied to the household electric load disaggregation with solar panels, with high accuracy and reliability.

Details

ISSN :
20937423 and 19750102
Volume :
15
Database :
OpenAIRE
Journal :
Journal of Electrical Engineering & Technology
Accession number :
edsair.doi...........0f7a911b945e91f173c6db21abd2bb1c
Full Text :
https://doi.org/10.1007/s42835-020-00513-7