Back to Search
Start Over
Cortical dynamics of speech feedback control in non-fluent Primary Progressive Aphasia
- Publication Year :
- 2022
- Publisher :
- Cold Spring Harbor Laboratory, 2022.
-
Abstract
- Primary Progressive Aphasia (PPA) is a clinical syndrome in which patients progressively lose speech and language abilities. The non-fluent variant of PPA (nfvPPA) is characterised by impaired motor speech and agrammatism. To date, no study in nfvPPA patients has either examined speech motor control behaviour or imaged the speech motor control network during vocal production. Here, we did this using a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations with voxel-based morphometry (VBM). We examined task-induced non-phase-locked neural oscillatory activity during a vocal motor control task, where participants were prompted to phonate the vowel /□/ for ∼2.4s while the pitch of their auditory feedback was shifted either up or down by 100 cents for a period of 400ms mid-utterance. Participants were 18 nfvPPA patients (14 female, mean age = 67.79 ± 8.02 years) and 17 controls (13 female, mean age = 64.81 ± 5.76 years). Patients showed a smaller compensation response to pitch perturbation than controls (p < 0.05). Task-induced neural oscillations across five frequency bands were reconstructed in source space for each subject during pitch feedback perturbation. Patients exhibited reduced task-induced alpha-band (8-12Hz) neural activity unrelated to their atrophy patterns, in the right temporal lobe and the right temporoparietal junction (p < 0.01) from 250ms to 750ms after pitch perturbation onset. Patients also showed increased task-induced beta-band (12-30Hz) activity also unrelated to cortical atrophy in the left dorsal sensorimotor cortex, left premotor cortex and the left supplementary motor area (p < 0.01) from 50ms to 150ms after pitch perturbation onset. Reduced average alpha-band power at the peak voxel in the temporoparietal cluster in the right hemisphere could predict speech motor impairment in patients (β = 3.41, F = 8.31, p = 0.0128) whereas increased average beta-band power at the peak voxel in the left dorsal sensorimotor cluster could not (β = -1.75, F = 1.72, p = 0.2123). Collectively, these results suggest significant disruption in sensorimotor integration during vocal production in nfvPPA patients which occurs unrelated to patterns of atrophy. These findings highlight how multimodal structure-function imaging in PPA enhances our understanding of its pathophysiological sequelae.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........0e81774f63c07ca359165df3684c5a6c
- Full Text :
- https://doi.org/10.1101/2022.07.28.501928