Back to Search Start Over

Matrix Multiplicative Weights Updates in Quantum Zero-Sum Games: Conservation Laws & Recurrence

Authors :
Jain, Rahul
Piliouras, Georgios
Sim, Ryann
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

Recent advances in quantum computing and in particular, the introduction of quantum GANs, have led to increased interest in quantum zero-sum game theory, extending the scope of learning algorithms for classical games into the quantum realm. In this paper, we focus on learning in quantum zero-sum games under Matrix Multiplicative Weights Update (a generalization of the multiplicative weights update method) and its continuous analogue, Quantum Replicator Dynamics. When each player selects their state according to quantum replicator dynamics, we show that the system exhibits conservation laws in a quantum-information theoretic sense. Moreover, we show that the system exhibits Poincare recurrence, meaning that almost all orbits return arbitrarily close to their initial conditions infinitely often. Our analysis generalizes previous results in the case of classical games.<br />NeurIPS 2022

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........0e40cb3fcd133b850c1bc0d3eddceba3
Full Text :
https://doi.org/10.48550/arxiv.2211.01681