Back to Search Start Over

Ethnic differences in COVID-19 infection, hospitalisation, and mortality: an OpenSAFELY analysis of 17 million adults in England

Authors :
Chris Bates
Frank Hester
David G. Harrison
Amir Mehrkar
David M. Evans
Helen Mcdonald
Laurie A. Tomlinson
Christopher T Rentsch
Alex J Walker
Caroline E Morton
Jonathan Cockburn
Angel Y S Wong
Elizabeth A. Williamson
Nish Chaturvedi
Kamlesh Khunti
Kevin Wing
John Parry
Ian J. Douglas
Seb Bacon
Krishnan Bhaskaran
Helen J Curtis
Peter Inglesby
Kathy Rowan
Ben Goldacre
Nicholas J DeVito
Richard Grieve
Stephen J. W. Evans
Rohini Mathur
Richard Croker
Rosalind M Eggo
Harriet Forbes
Sam Harper
William J Hulme
Anna Schultze
Henry Drysdale
Brian MacKenna
Liam Smeeth
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

BackgroundCOVID-19 has had a disproportionate impact on ethnic minority populations, both in the UK and internationally. To date, much of the evidence has been derived from studies within single healthcare settings, mainly those hospitalised with COVID-19. Working on behalf of NHS England, the aim of this study was to identify ethnic differences in the risk of COVID-19 infection, hospitalisation and mortality using a large general population cohort in England.MethodsWe conducted an observational cohort study using linked primary care records of 17.5 million adults between 1 February 2020 and 3 August 2020. Exposure was self-reported ethnicity collapsed into the 5 and 16 ethnicity categories of the English Census. Multivariable Cox proportional hazards regression was used to identify ethnic differences in the risk of being tested and testing positive for SARS-CoV-2 infection, COVID-19 related intensive care unit (ICU) admission, and COVID-19 mortality, adjusted for socio-demographic factors, clinical co-morbidities, geographic region, care home residency, and household size.ResultsA total of 17,510,002 adults were included in the study; 63% white (n=11,030,673), 6% south Asian (n=1,034,337), 2% black (n=344,889), 2% other (n=324,730), 1% mixed (n=172,551), and 26% unknown (n=4,602,822). After adjusting for measured explanatory factors, south Asian, black, and mixed groups were marginally more likely to be tested (south Asian HR 1.08, 95%CI 1.07-1.09; black HR 1.08; 95%CI 1.06-1.09, mixed HR 1.03, 95%CI 1.01-1.05), and substantially more likely to test positive for SARS-CoV-2 compared with white adults (south Asian HR 2.02. 95% CI 1.97-2.07; black HR 1.68, 95%CI 1.61-1.76; mixed HR 1.46, 95%CI 1.36-1.56). The risk of being admitted to ICU for COVID-19 was substantially increased in all ethnic minority groups compared with white adults (south Asian HR 2.22, 95%CI 1.96-2.52; black HR 3.07, 95%CI 2.61-3.61; mixed HR 2.86, 95%CI 2.19-3.75, other HR 2.86, 95%CI 2.31-3.63). Risk of COVID-19 mortality was increased by 25-56% in ethnic minority groups compared with white adults (south Asian HR 1.27, 95%CI 1.17-1.38; black HR 1.55, 95%CI 1.38-1.75; mixed HR 1.40, 95%CI 1.12-1.76; other HR 1.25, 95%CI 1.05-1.49).We observed heterogeneity of associations after disaggregation into detailed ethnic groupings; Indian and African groups were at higher risk of all outcomes; Pakistani, Bangladeshi and Caribbean groups were less or equally likely to be tested for SARS-CoV-2, but at higher risk of all other outcomes, Chinese groups were less likely to be tested for and test positive for SARS-CoV-2, more likely to be admitted to ICU, and equally likely to die from COVID-19.ConclusionsWe found evidence of substantial ethnic inequalities in the risk of testing positive for SARS-CoV-2, ICU admission, and mortality, which persisted after accounting for explanatory factors, including household size. It is likely that some of this excess risk is related to factors not captured in clinical records such as occupation, experiences of structural discrimination, or inequitable access to health and social services. Prioritizing linkage between health, social care, and employment data and engaging with ethnic minority communities to better understand their lived experiences is essential for generating evidence to prevent further widening of inequalities in a timely and actionable manner.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........0e331828f15c403036d003ce578d98a3
Full Text :
https://doi.org/10.1101/2020.09.22.20198754