Back to Search
Start Over
Identification of the receptor component of the IκBα–ubiquitin ligase
- Source :
- Nature. 396:590-594
- Publication Year :
- 1998
- Publisher :
- Springer Science and Business Media LLC, 1998.
-
Abstract
- NF-kappaB, a ubiquitous, inducible transcription factor involved in immune, inflammatory, stress and developmental processes, is retained in a latent form in the cytoplasm of non-stimulated cells by inhibitory molecules, IkappaBs. Its activation is a paradigm for a signal-transduction cascade that integrates an inducible kinase and the ubiquitin-proteasome system to eliminate inhibitory regulators. Here we isolate the pIkappaBalpha-ubiquitin ligase (pIkappaBalpha-E3) that attaches ubiquitin, a small protein which marks other proteins for degradation by the proteasome system, to the phosphorylated NF-kappaB inhibitor pIkappaBalpha. Taking advantage of its high affinity to pIkappaBalpha, we isolate this ligase from HeLa cells by single-step immunoaffinity purification. Using nanoelectrospray mass spectrometry, we identify the specific component of the ligase that recognizes the pIkappaBalpha degradation motif as an F-box/WD-domain protein belonging to a recently distinguished family of beta-TrCP/Slimb proteins. This component, which we denote E3RSIkappaB (pIkappaBalpha-E3 receptor subunit), binds specifically to pIkappaBalpha and promotes its in vitro ubiquitination in the presence of two other ubiquitin-system enzymes, E1 and UBC5C, one of many known E2 enzymes. An F-box-deletion mutant of E3RS(IkappaB), which tightly binds pIkappaBalpha but does not support its ubiquitination, acts in vivo as a dominant-negative molecule, inhibiting the degradation of pIkappaBalpha and consequently NF-kappaB activation. E3RS(IkappaB) represents a family of receptor proteins that are core components of a class of ubiquitin ligases. When these receptor components recognize their specific ligand, which is a conserved, phosphorylation-based sequence motif, they target regulatory proteins containing this motif for proteasomal degradation.
Details
- ISSN :
- 14764687 and 00280836
- Volume :
- 396
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi...........0e263847261908c083a9a36ff944c79b
- Full Text :
- https://doi.org/10.1038/25159