Back to Search
Start Over
Thermal evolution of the indentation-induced phases of silicon
- Source :
- Journal of Applied Physics. 126:105901
- Publication Year :
- 2019
- Publisher :
- AIP Publishing, 2019.
-
Abstract
- Novel phases of Si that are predicted to have industrially desirable properties can be recovered after indentation-induced pressure. However, the thermal stability of these phases is not well understood. Furthermore, in the past, different methods of annealing have resulted in conflicting reports on annealing stability and transformation pathways. This study investigates the thermal stability of several metastable Si phases called r8-Si, bc8-Si, hd-Si, and Si-XIII under furnace annealing, incremental annealing, and laser annealing using Raman microspectroscopy and electron diffraction. The temperature range of stability for these metastable phases is thus determined. Of particular interest, hd-Si is stable to a much higher temperature than previously reported, being the predominant phase observed in this study after annealing at 450 °C. This finding was enabled through a new method for confirming the presence of hd-Si by detailed electron diffraction. This high thermal stability generates renewed interest in exploiting this phase for industrial applications, such as strain-tailored solar absorption.
- Subjects :
- 010302 applied physics
Silicon
Annealing (metallurgy)
General Physics and Astronomy
chemistry.chemical_element
02 engineering and technology
Atmospheric temperature range
021001 nanoscience & nanotechnology
7. Clean energy
01 natural sciences
Electron diffraction
chemistry
Chemical physics
Metastability
Indentation
0103 physical sciences
Thermal
Thermal stability
0210 nano-technology
Subjects
Details
- ISSN :
- 10897550 and 00218979
- Volume :
- 126
- Database :
- OpenAIRE
- Journal :
- Journal of Applied Physics
- Accession number :
- edsair.doi...........0dc6bdc1fdc5d14367f89bab01260964