Back to Search Start Over

Mtg16-dependent repression of E protein activity is required for early lymphopoiesis

Authors :
Pankaj Acharya
Kristy R. Stengel
David K. Flaherty
Brittany K. Matlock
Shilpa Sampathi
Scott W. Hiebert
Christopher S. Williams
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

The ETO/MTG family of transcriptional co-repressors play a key role in adult stem cell functions in various tissues. These factors are commonly found in complex with E proteins such as E2A, HEB, and Lyl1 as well as PRDM14 and BTB/POZ domain factors. Structural studies identified a region in the first domain of MTGs that is conserved in the Drosophila homologue Nervy (Nervy Homology Domain-1, or NHR1) that is essential for ETO/MTG8 to inhibit E protein-dependent transcription. The Cancer Genome Atlas (TCGA) identified cancer associated single nucleotide variants (SNVs) near the MTG16:E protein contact site. We tested these SNVs using sensitive yeast two-hybrid association assays, which suggested that only P209T significantly affected E protein binding. We then used CRISPR-Cas9 and homology directed DNA repair to insert P209T and a known inactivating mutation, F210A, into NHR1 of Mtg16 in the germ line of mice. These mice developed normally, but in competitive bone marrow transplantation assays, the F210A-containing stem cells failed to contribute to lymphopoiesis, while P209T mutant cells were reduced in mature T cell populations. High content fluorescent activated analytical flow cytometry assays identified a defect in the multi-potent progenitor to common lymphoid progenitor transition during lymphopoiesis. These data indicate that the cancer associated changes are likely benign polymorphisms, and the MTG:E protein association is required for lymphopoiesis, but less important for myelopoiesis and stem cell functions.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........0cfc841cf3163741863d04524bc12dcf