Back to Search Start Over

Promigratory Activity of Oxytocin on Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Authors :
Myung Ho Jeong
Yong Sook Kim
Jung Chae Kang
Moon Hwa Hong
Jeong Gwan Cho
Jong Chun Park
Chang Hun Song
Youngkeun Ahn
Jin Kim
Jin Sook Kwon
Source :
Artificial Organs. 34:453-461
Publication Year :
2010
Publisher :
Wiley, 2010.

Abstract

Recent studies show that oxytocin has various effects on cellular behaviors. Oxytocin is reported to stimulate cardiomyogenesis of embryonic stem cells and endothelial cell proliferation. Mesenchymal stem cells (MSCs) are widely used for cardiac repair, and we elucidated the effect of oxytocin on umbilical cord derived-MSCs (UCB-MSCs). UCB-MSCs were pretreated with oxytocin (100 nM) and washed with saline prior to experiments. To evaluate their angiogenic potential and migration activity, tube formation assay and Boyden chamber assay were performed. For in vivo study, ischemia-reperfusion was induced in rats, and UCB-MSCs with or without oxytocin pretreatment were injected into the infarcted myocardium to evaluate the engraftment of injected cells. Histological and hemodynamic studies were performed. Oxytocin-treated UCB-MSCs showed a decrease in tube formation but a drastic increase in transwell migration activity. The transcription level of matrix metalloproteinase (MMP)-2 was increased in oxytocin-treated UCB-MSCs. Knock-down of MMP-2 by use of siRNA restored the tube formation, while reducing transmigration activity. In rats injected with oxytocin-treated UCB-MSCs, cardiac fibrosis and CD68 infiltration in the peri-infarct zone were reduced, whereas cell engraftment and connexin43 expression were greater than in rats injected with untreated UCB-MSCs. By contrast, angiogenesis did not differ significantly between the two groups. Cardiac contractility was higher in the group injected with oxytocin-treated UCB-MSCs than in the group injected with phosphate-buffered saline alone. Collectively, oxytocin is an effective priming reagent for stem cells for application to damaged heart tissue.

Details

ISSN :
15251594 and 0160564X
Volume :
34
Database :
OpenAIRE
Journal :
Artificial Organs
Accession number :
edsair.doi...........0cce64d3dd5bae1ae93ca9badb39fb4a
Full Text :
https://doi.org/10.1111/j.1525-1594.2009.00894.x