Back to Search Start Over

Hearing pseudoconvexity in Lipschitz domains with holes via $${\bar{\partial }}$$ ∂ ¯

Authors :
Mei-Chi Shaw
Christine Laurent-Thiébaut
Siqi Fu
Source :
Mathematische Zeitschrift. 287:1157-1181
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

Let \(\Omega ={\widetilde{\Omega }}{\setminus } \overline{D}\) where \({\widetilde{\Omega }}\) is a bounded domain with connected complement in \({\mathbb {C}}^n\) (or more generally in a Stein manifold) and D is relatively compact open subset of \({\widetilde{\Omega }}\) with connected complement in \(\widetilde{\Omega }\). We obtain characterizations of pseudoconvexity of \({\widetilde{\Omega }}\) and D through the vanishing or Hausdorff property of the Dolbeault cohomology groups of \(\Omega \) on various function spaces. In particular, we show that if the boundaries of \({\widetilde{\Omega }}\) and D are Lipschitz and \(C^2\)-smooth respectively, then both \({\widetilde{\Omega }}\) and D are pseudoconvex if and only if 0 is not in the spectrum of the \(\overline{\partial }\)-Neumann Laplacian of \(\Omega \) on (0, q)-forms for \(1\le q\le n-2\) when \(n\ge 3\); or 0 is not a limit point of the spectrum of the \(\overline{\partial }\)-Neumann Laplacian on (0, 1)-forms when \(n=2\).

Details

ISSN :
14321823 and 00255874
Volume :
287
Database :
OpenAIRE
Journal :
Mathematische Zeitschrift
Accession number :
edsair.doi...........0ca2dea08a6efe1506006600ecc3a7ec
Full Text :
https://doi.org/10.1007/s00209-017-1863-6