Back to Search
Start Over
Hearing pseudoconvexity in Lipschitz domains with holes via $${\bar{\partial }}$$ ∂ ¯
- Source :
- Mathematische Zeitschrift. 287:1157-1181
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- Let \(\Omega ={\widetilde{\Omega }}{\setminus } \overline{D}\) where \({\widetilde{\Omega }}\) is a bounded domain with connected complement in \({\mathbb {C}}^n\) (or more generally in a Stein manifold) and D is relatively compact open subset of \({\widetilde{\Omega }}\) with connected complement in \(\widetilde{\Omega }\). We obtain characterizations of pseudoconvexity of \({\widetilde{\Omega }}\) and D through the vanishing or Hausdorff property of the Dolbeault cohomology groups of \(\Omega \) on various function spaces. In particular, we show that if the boundaries of \({\widetilde{\Omega }}\) and D are Lipschitz and \(C^2\)-smooth respectively, then both \({\widetilde{\Omega }}\) and D are pseudoconvex if and only if 0 is not in the spectrum of the \(\overline{\partial }\)-Neumann Laplacian of \(\Omega \) on (0, q)-forms for \(1\le q\le n-2\) when \(n\ge 3\); or 0 is not a limit point of the spectrum of the \(\overline{\partial }\)-Neumann Laplacian on (0, 1)-forms when \(n=2\).
- Subjects :
- Mathematics::Complex Variables
General Mathematics
010102 general mathematics
Mathematical analysis
Hausdorff space
Serre duality
Dolbeault cohomology
01 natural sciences
Omega
Combinatorics
Pseudoconvexity
0103 physical sciences
Stein manifold
Domain (ring theory)
010307 mathematical physics
0101 mathematics
Laplace operator
Mathematics
Subjects
Details
- ISSN :
- 14321823 and 00255874
- Volume :
- 287
- Database :
- OpenAIRE
- Journal :
- Mathematische Zeitschrift
- Accession number :
- edsair.doi...........0ca2dea08a6efe1506006600ecc3a7ec
- Full Text :
- https://doi.org/10.1007/s00209-017-1863-6