Back to Search Start Over

Knowledge-based aircraft fuel system integration

Authors :
Raghu Chaitanya Munjulury
Petter Krus
Adrián Sabaté López
Ingo Staack
Source :
Aircraft Engineering and Aerospace Technology. 90:1128-1135
Publication Year :
2018
Publisher :
Emerald, 2018.

Abstract

Purpose This paper aims to present a knowledge-based fuel system, implementation and application, oriented towards its use in aircraft conceptual design. Design/methodology/approach Methodology and software tools oriented to knowledge-based engineering applications (MOKA) is used as a foundation for the implementation and integration of fuel systems. Findings Including fuel systems earlier in the design process creates an opportunity to optimize it and obtain better solutions by allocating suitable locations in an aircraft, thereby reflecting on the centre of gravity of the aircraft. Research limitations/implications All geometries are symbolic, representing a space allocation inside the aircraft for the fuel system. A realistic representation of the real components could be realized in detail design. Practical implications Fuel weight is a significant part of take-off weight and decisive in aircraft sizing and range estimations. The three-dimensional geometry provides a better estimation of the volume that is available to allocate the necessary entities. It also provides fast measures for weight and balance, fuel capacity, relative tank positions and a first estimation of piping length. Originality/value Fuel systems appear early in the design process, as they are involved in several first estimations. By using a knowledge-based engineering approach, several alternatives can be visualized and estimated in the conceptual design process. Furthermore, using the weights and centre of gravity at different angles of pitch and roll of each fuel tank, the aircraft could be optimized for handling qualities by using automatically generated system simulation models.

Details

ISSN :
17488842
Volume :
90
Database :
OpenAIRE
Journal :
Aircraft Engineering and Aerospace Technology
Accession number :
edsair.doi...........0ca025d9b7af5861ee269f2ec9a336c4