Back to Search Start Over

Improving the prediction accuracy in blended learning environment using synthetic minority oversampling technique

Authors :
Petar Spalević
Dejan Rančić
Nemanja Macek
Gabrijela Dimić
Vida Drasute
Source :
Information Discovery and Delivery. 47:76-83
Publication Year :
2019
Publisher :
Emerald, 2019.

Abstract

Purpose This paper aims to deal with the previously unknown prediction accuracy of students’ activity pattern in a blended learning environment. Design/methodology/approach To extract the most relevant activity feature subset, different feature-selection methods were applied. For different cardinality subsets, classification models were used in the comparison. Findings Experimental evaluation oppose the hypothesis that feature vector dimensionality reduction leads to prediction accuracy increasing. Research limitations/implications Improving prediction accuracy in a described learning environment was based on applying synthetic minority oversampling technique, which had affected results on correlation-based feature-selection method. Originality/value The major contribution of the research is the proposed methodology for selecting the optimal low-cardinal subset of students’ activities and significant prediction accuracy improvement in a blended learning environment.

Details

ISSN :
23986247
Volume :
47
Database :
OpenAIRE
Journal :
Information Discovery and Delivery
Accession number :
edsair.doi...........0c669efeeee025ba2a19cb5463fd86a4