Back to Search Start Over

Dynamic bifunctional THz metasurface via dual-mode decoupling

Authors :
Xuan Cong
Hongxin Zeng
Shiqi Wang
Qiwu Shi
Shixiong Liang
Jiandong Sun
Sen Gong
Feng Lan
Ziqiang Yang
Yaxin Zhang
Source :
Photonics Research. 10:2008
Publication Year :
2022
Publisher :
Optica Publishing Group, 2022.

Abstract

Metasurfaces have powerful light field manipulation capabilities and have been researched and developed extensively in various fields. With an increasing demand for diverse functionalities, terahertz (THz) metasurfaces are also expanding their domain. In particular, integrating different functionalities into a single device is a compelling domain in metasurfaces. In this work, we demonstrate a functionally decoupled THz metasurface that can incorporate any two functions into one metasurface and switch dynamically through external excitation. This proposed metasurface is formed by the combination of split-ring resonators and phase change material vanadium dioxide ( VO 2 ). It operates in the single-ring resonant mode and double-ring resonant mode with varying VO 2 in insulating and metallic states, respectively. More importantly, the phase modulation is independent in two operating modes, and both cover a 360° cross-polarized phase with efficient polarization conversion. This characteristic makes it obtain arbitrary independent phase information on the metasurface with different modes to switch dual functions dynamically. Here, we experimentally demonstrate the functions of a tunable focal length and large-angle focus deflection of a THz off-axis parabolic mirror to verify the dual-function switching characteristics of the functionally decoupled metasurface. The functionally decoupled metasurface developed in this work broadens the way for the research and application of multifunctional modulation devices in the THz band.

Details

ISSN :
23279125
Volume :
10
Database :
OpenAIRE
Journal :
Photonics Research
Accession number :
edsair.doi...........0c4b51f12f7deb334dcb4866f79020f4