Back to Search
Start Over
Organic resistive switching device based on cellulose-gelatine microcomposite fibers
- Source :
- Journal of Materials Science: Materials in Electronics. 30:21288-21296
- Publication Year :
- 2019
- Publisher :
- Springer Science and Business Media LLC, 2019.
-
Abstract
- The present work demonstrates the non-volatile resistive switching behavior of cellulose-gelatine microcomposite fibers (CGMFs). The CGMFs were synthesized using the electrospinning technique and used as a switching layer for a resistive memory device. The morphological study reveals that the switching layer was composed of good quality of microcomposite fibers and possesses cross-link like morphology. The functional groups present in the switching layer were confirmed by Fourier-transform infrared spectroscopy technique. The CGMFs based device shows the bipolar resistive switching effect and requires low SET (+ 1.33 V) and RESET (− 1.42 V) voltages for the operation. The charge-magnetic flux relation of the device was calculated and memristive device like properties were observed from the results. The charge driving capability of the device was found to be ~ 1.3 × 10−2 C, which is sufficient to get the good resistive switching property. The non-volatile resistive switching behavior of the CGMFs based device suggested that the device has good performance in terms of endurance (500 cycles) and retention (2000 s). The uniformity and reliability of the device were confirmed by statistical calculations (standard deviation and coefficient of variation). The conduction model fitting results suggested that the space charge limited current (SCLC) and Ohmic conduction mechanisms were responsible for device operation during the high resistance state (HRS) and low resistance state (LRS), respectively. A possible resistive switching mechanism is presented by considering the formation and rupture of Ag conductive filament under the influence of external voltage.
- Subjects :
- 010302 applied physics
Work (thermodynamics)
Resistive touchscreen
Materials science
business.industry
Condensed Matter Physics
Thermal conduction
01 natural sciences
Space charge
Atomic and Molecular Physics, and Optics
Electrospinning
Electronic, Optical and Magnetic Materials
Reliability (semiconductor)
0103 physical sciences
Optoelectronics
Electrical and Electronic Engineering
business
Layer (electronics)
Voltage
Subjects
Details
- ISSN :
- 1573482X and 09574522
- Volume :
- 30
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Science: Materials in Electronics
- Accession number :
- edsair.doi...........0c2b9aa1b24a6080ce8cbb006656c663
- Full Text :
- https://doi.org/10.1007/s10854-019-02503-6