Back to Search Start Over

The Carotenoid S1 State in LH2 Complexes from Purple Bacteria Rhodobacter sphaeroides and Rhodopseudomonas acidophila: S1 Energies, Dynamics, and Carotenoid Radical Formation

Authors :
Torbjörn Pascher
Tomáš Polívka
Richard J. Cogdell
Zhi He
Jennifer L. Herek
Harry A. Frank
Donatas Zigmantas
Tõnu Pullerits
Villy Sundström
Source :
The Journal of Physical Chemistry B. 106:11016-11025
Publication Year :
2002
Publisher :
American Chemical Society (ACS), 2002.

Abstract

Using near-infrared femtosecond absorption spectroscopy, we have determined the S1 energies of the carotenoids spheroidene and rhodopin glucoside in LH2 complexes of purple bacteria. The S1 energies in the LH2 complexes yield values of 13400 ± 100 cm-1 for spheroidene and 12550 ± 150 cm-1 for rhodopin glucoside, which are very close to the S1 energies obtained for both carotenoids in solution. The 850 cm-1 difference between the S1 energies of these two carotenoids significantly affects the energy transfer pathways within the LH2 complexes. The S1 energy of spheroidene in the LH2 complex of Rhodobacter (Rb.) sphaeroides is high enough to allow efficient energy transfer from the S1 state to bacteriochlorophylls, resulting in a substantial shortening of the spheroidene S1 lifetime in the LH2 complex (1.7 ps) compared with the lifetime in solution (8.5 ps). Rhodopin glucoside, which occurs in Rhodopseudomonas (Rps.) acidophila, has an S1 energy in the LH2 complex too low for efficient S1-mediated energy tran...

Details

ISSN :
15205207 and 15206106
Volume :
106
Database :
OpenAIRE
Journal :
The Journal of Physical Chemistry B
Accession number :
edsair.doi...........0bf49a4cf323e5d8c1d2ada9fe09a32d
Full Text :
https://doi.org/10.1021/jp025752p