Back to Search
Start Over
Intercalation and delamination of Ti2SnC with high lithium ion storage capacity
- Source :
- Nanoscale. 13:7355-7361
- Publication Year :
- 2021
- Publisher :
- Royal Society of Chemistry (RSC), 2021.
-
Abstract
- Li-ion batteries attract great attention due to the rapidly increasing and urgent demand for high energy storage devices. MAX phase compounds, layered ternary transition metal carbides and/or nitrides show promise as candidate materials of electrodes for Li-ion batteries. However, the highest specific capacity reported up to now is relatively low (180 mA h g-1), preventing them from use in real applications. Exploring more MAX phase compounds with delaminated two-dimensional structure is an effective solution to increase the specific capacity. Herein, we report the reversible electrochemical intercalation of Li+ into Ti2SnC (MAX phase) nanosheets. Owing to the synergistic effects of intercalation and dimethyl sulfoxide (DMSO)-assisted exfoliation, Ti2SnC nanosheets are successfully obtained via sonication in DMSO. Moreover, when using as an anode of a Li-ion battery, Ti2SnC nanosheets exhibited an increasing specific capacity with cycling due to the exfoliation of Ti2SnC nanosheets via reversible Li-ion intercalation. After 1000 charge-discharge cycles, Ti2SnC nanosheets delivered a high specific capacity of 735 mA h g-1 at a current density of 50 mA g-1, which is far better than other MAX phases, such as Ti2SC, Ti3SiC2 and Nb2SnC. The current work demonstrates the Li-ion storage potential and indicates a novel strategy for further intercalation and delamination of MAX phases.
Details
- ISSN :
- 20403372 and 20403364
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Nanoscale
- Accession number :
- edsair.doi...........0be205a7745bfe8a619021b953c325ba