Back to Search Start Over

High Volumetric Energy and Power Density Li2TiSiO5 Battery Anodes via Graphene Functionalization

Authors :
Norman S. Luu
Mark T.Z. Tan
Kyu-Young Park
Jacob C. Hechter
Julia R. Downing
Sungkyu Kim
Vinayak P. Dravid
Mark C. Hersam
Kai He
Jin Myoung Lim
Source :
Matter. 3:522-533
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

Summary The realization of lithium-ion battery (LIB) anodes with high volumetric energy densities and minimal Li plating at high rates remains a key challenge for emerging technologies, including electric vehicles and grid-level energy storage. Here, we present graphene-functionalized Li2TiSiO5 (G-LTSO) as a high volumetric energy and power density anode for LIBs. G-LTSO forms a dense electrode structure with electronically and ionically conductive networks that deliver superior electrochemical performance. Upon lithiation, in situ transmission electron microscopy reveals that graphene functionalization yields minimal structural changes compared with pristine LTSO, resulting in high cycling stability. Furthermore, G-LTSO exhibits not only high charge and discharge capacities but also low overpotentials at high rates with minimal voltage fading due to reduced formation of a solid-electrolyte interphase. The combination of highly compacted electrode morphology, stable high-rate electrochemistry, and low operating potential enables G-LTSO to achieve exceptional volumetric energy and power densities that overcome incumbent challenges for LIBs.

Details

ISSN :
25902385
Volume :
3
Database :
OpenAIRE
Journal :
Matter
Accession number :
edsair.doi...........0b32066a820e9f8db40ab2dfa3ceb59f