Back to Search Start Over

Molecular beam epitaxy of superconducting Sn1−xInxTe thin films

Authors :
Masashi Kawasaki
Minoru Kawamura
Makoto Masuko
Ryutaro Yoshimi
Kei S. Takahashi
Atsushi Tsukazaki
Y. Tokura
Source :
Physical Review Materials. 4
Publication Year :
2020
Publisher :
American Physical Society (APS), 2020.

Abstract

We report a systematic study on the growth conditions of ${\mathrm{Sn}}_{1\text{\ensuremath{-}}x}{\mathrm{In}}_{x}\mathrm{Te}$ thin films by molecular beam epitaxy for maximization of superconducting transition temperature ${T}_{\mathrm{c}}$. Careful tuning of the flux ratios of Sn, In, and Te enables us to find an optimum condition for substituting rich In content $(x=0.66)$ into the Sn site in a single phase of ${\mathrm{Sn}}_{1\text{\ensuremath{-}}x}{\mathrm{In}}_{x}\mathrm{Te}$ beyond the bulk solubility limit at ambient pressure $(x=0.5)$. ${T}_{\mathrm{c}}$ shows a dome-shaped dependence on In content $x$ with the highest ${T}_{\mathrm{c}}=4.20\phantom{\rule{0.16em}{0ex}}\mathrm{K}$ at $x=0.55$, being consistent to that reported for bulk crystals. The well-regulated ${\mathrm{Sn}}_{1\text{\ensuremath{-}}x}{\mathrm{In}}_{x}\mathrm{Te}$ films can be a useful platform to study possible topological superconductivity by integrating them into the state-of-the-art junctions and/or proximity-coupled devices.

Details

ISSN :
24759953
Volume :
4
Database :
OpenAIRE
Journal :
Physical Review Materials
Accession number :
edsair.doi...........0aefcc97b12040978db4538ce83afad6
Full Text :
https://doi.org/10.1103/physrevmaterials.4.091202