Back to Search
Start Over
A note on the relation between categories and hyperstructures
- Source :
- Advances in Pure and Applied Mathematics. 9:55-66
- Publication Year :
- 2018
- Publisher :
- ISTE Group, 2018.
-
Abstract
- In this paper, first we introduce the categories of “n-ary hyperstructures” ({{\mathrm{HS}}_{n}}) and “n-ary hyperstructures with particular carriers and relations” ({{\mathrm{HSP}}_{n}}), and we prove that the categories of{{\mathrm{HS}}_{n}}and{{\mathrm{HSP}}_{n-1}}are isomorphic. Then we prove that the category of “{(n-1)}-ary hypergroupoids” ({{\mathrm{HG}}_{n-1}}) is a full subcategory of the category{{\mathrm{HS}}_{n}}and the category of “unary bindingn-ary algebra with particular properties” ({{\mathrm{UBA}}_{n}}) is a full subcategory of the category{{\mathrm{HSP}}_{n}}. Next, we define two functorsFandG, and show that the restriction of the functorFto the category{{\mathrm{HG}}_{n}}is an isomorphism of{{\mathrm{HG}}_{n}}onto{{\mathrm{UBA}}_{n}}, and the restriction of the functorGto the category{{\mathrm{UBA}}_{n}}is an isomorphism of{{\mathrm{UBA}}_{n}}onto{{\mathrm{HG}}_{n}}.
Details
- ISSN :
- 18696090, 18671152, and 20170025
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Advances in Pure and Applied Mathematics
- Accession number :
- edsair.doi...........0aebd1549f42960d31c8b35a64d41750
- Full Text :
- https://doi.org/10.1515/apam-2017-0025