Back to Search
Start Over
Engineering the filamentous fungusNeurospora crassafor lipid production from lignocellulosic biomass
- Source :
- Biotechnology and Bioengineering. 111:1097-1107
- Publication Year :
- 2014
- Publisher :
- Wiley, 2014.
-
Abstract
- Microbially produced triacylglycerol (TAG) is a potential feedstock for the production of biodiesel, but its commercialization will require high yields from low-cost renewable feedstocks such as lignocellulose. The present study employs a multi-gene approach to increasing TAG biosynthesis in the filamentous fungus Neurospora crassa. We demonstrate the redirection of carbon flux from glycogen biosynthesis towards fatty acid biosynthesis in a glycogen synthase deletion strain (Δgsy-1). Furthermore, combining Δgsy-1 with an enhanced TAG biosynthetic strain (acyl-Coenzyme A synthase; Δacs-3) of N. crassa yielded a twofold increase in total fatty acid accumulation over the control strain. The cellulose degrading potential of this double deletion strain was improved by deleting of the carbon catabolite regulation transcription factor (Δcre-1) to create the triple deletion strain Δacs-3 Δcre-1; Δgsy-1. This strain exhibited early and increased cellulase expression, as well as fourfold increased total fatty acid accumulation over the control on inhibitor-free model cellulose medium. The Δcre-1 mutation, however, was not beneficial for total fatty acid accumulation from pretreated lignocellulose. Conversion of dilute-acid pretreated Miscanthus to TAG was maximum in the constructed strain Δacs-3; Δgsy-1, which accumulated 2.3-fold more total fatty acid than the wild-type control strain, corresponding to a total fatty acid yield of 37.9 mg/g dry untreated Miscanthus.
- Subjects :
- chemistry.chemical_classification
Strain (chemistry)
biology
Catabolite repression
Fatty acid
Bioengineering
Cellulase
biology.organism_classification
Applied Microbiology and Biotechnology
Neurospora crassa
chemistry.chemical_compound
chemistry
Biosynthesis
Biochemistry
biology.protein
Cellulose
Glycogen synthase
Biotechnology
Subjects
Details
- ISSN :
- 00063592
- Volume :
- 111
- Database :
- OpenAIRE
- Journal :
- Biotechnology and Bioengineering
- Accession number :
- edsair.doi...........0a462c5ab7ee20381a26296b3ac18304
- Full Text :
- https://doi.org/10.1002/bit.25211