Back to Search Start Over

Expediting the Conversion of Li2S2 to Li2S Enables High-Performance Li–S Batteries

Authors :
Chungang Wang
Lingyu Zhang
Bingqiu Liu
Tianning Lin
Lu Li
Qi Zhang
Zhanshuang Jin
Zhong-Min Su
Hongfeng Jia
Source :
ACS Nano. 15:7318-7327
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

The solid-solid conversion of Li2S2 to Li2S is a crucial and rate-controlling step that provides one-half of the theoretical capacity of lithium-sulfur (Li-S) batteries. The catalysts in the Li-S batteries are often useless in the solid-solid conversion due to the poor contact interfaces between solid catalysts and insoluble solid Li2S2. Considering that ultrafine nanostructured materials have the properties of quantum size effects and unconventional reactivities, we design and synthesize for the pomegranate-like sulfur nanoclusters@nitrogen-doped carbon@nitrogen-doped carbon nanospheres (S@N-C@N-C NSs) with a seed-pulp-peel nanostructure. The ultrafine S@N-C subunits (diameter ≈5 nm) and effects of a spatial structure perfectly realize the rapid conversion of ultrafine Li2S2 to Li2S. The S@N-C@N-C seed-pulp-peel NS cathodes exhibit excellent sulfur utilization, superb rate performance (760 mAh g-1 at 10.0 C), and an ultralow capacity decay rate of about 0.016% per cycle over 1000 cycles at 4.0 C. The proposed strategy based on ultrafine nanostructured materials can also inform material engineering in related energy storage and conversion fields.

Details

ISSN :
1936086X and 19360851
Volume :
15
Database :
OpenAIRE
Journal :
ACS Nano
Accession number :
edsair.doi...........09b74225b1907efecf7dcfc6b0b44e18
Full Text :
https://doi.org/10.1021/acsnano.1c00556