Back to Search Start Over

Evidence of Unconventional Superconductivity on the Surface of the Nodal Semimetal CaAg1−xPdxP

Authors :
Rikizo YANO
Shota Nagasaka
Naoki Matsubara
Kazushige Saigusa
Tsuyoshi Tanda
Seiichiro Ito
Ai Yamakage
Yoshihiko Okamoto
Koshi Takenaka
Satoshi Kashiwaya
Publication Year :
2022
Publisher :
Research Square Platform LLC, 2022.

Abstract

Surface states of topological materials provide extreme electronic states for unconventional superconducting states. CaAg1−xPdxP is an ideal candidate for a nodal-line Dirac semimetal with drumhead surface states and no additional bulk bands. Here, we report that CaAg1−xPdxP has surface states that exhibit unconventional superconductivity (SC) around 1.5 K. Extremely sharp magnetoresistance, tuned by surface-sensitive gating, determines the surface origin of the ultrahigh-mobility “electrons.” The Pd-doping elevates the Fermi level towards the surface states, and as a result, the critical temperature (Tc) is increased up to 1.7 K from 1.2 K for undoped CaAgP. Furthermore, a soft point-contact study at the surface of Pd-doped CaAgP proved the emergence of unconventional SC on the surface. We observed the bell-shaped conductance spectra, a hallmark of the unconventional SC. Ultrahigh mobility carriers derived from the surface flat bands generate a new class of unconventional SC.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........09aafd180c699d2fd952feaad980f880