Back to Search Start Over

The modal logic of $${\beta(\mathbb{N})}$$

Authors :
Guram Bezhanishvili
John Harding
Source :
Archive for Mathematical Logic. 48:231-242
Publication Year :
2009
Publisher :
Springer Science and Business Media LLC, 2009.

Abstract

Let $${\beta(\mathbb{N})}$$ denote the Stone–Cech compactification of the set $${\mathbb{N}}$$ of natural numbers (with the discrete topology), and let $${\mathbb{N}^\ast}$$ denote the remainder $${\beta(\mathbb{N})-\mathbb{N}}$$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of $${\mathbb{N}^\ast}$$ is S4 and that the modal logic of $${\beta(\mathbb{N})}$$ is S4.1.2.

Details

ISSN :
14320665 and 09335846
Volume :
48
Database :
OpenAIRE
Journal :
Archive for Mathematical Logic
Accession number :
edsair.doi...........087ea8a2085656e883694bbf7c0256b1
Full Text :
https://doi.org/10.1007/s00153-009-0123-9