Back to Search
Start Over
The modal logic of $${\beta(\mathbb{N})}$$
- Source :
- Archive for Mathematical Logic. 48:231-242
- Publication Year :
- 2009
- Publisher :
- Springer Science and Business Media LLC, 2009.
-
Abstract
- Let $${\beta(\mathbb{N})}$$ denote the Stone–Cech compactification of the set $${\mathbb{N}}$$ of natural numbers (with the discrete topology), and let $${\mathbb{N}^\ast}$$ denote the remainder $${\beta(\mathbb{N})-\mathbb{N}}$$ . We show that, interpreting modal diamond as the closure in a topological space, the modal logic of $${\mathbb{N}^\ast}$$ is S4 and that the modal logic of $${\beta(\mathbb{N})}$$ is S4.1.2.
Details
- ISSN :
- 14320665 and 09335846
- Volume :
- 48
- Database :
- OpenAIRE
- Journal :
- Archive for Mathematical Logic
- Accession number :
- edsair.doi...........087ea8a2085656e883694bbf7c0256b1
- Full Text :
- https://doi.org/10.1007/s00153-009-0123-9