Back to Search
Start Over
Sturm–Liouville theory and decay parameter for quadratic markov branching processes
- Source :
- Journal of Applied Probability. :1-28
- Publication Year :
- 2023
- Publisher :
- Cambridge University Press (CUP), 2023.
-
Abstract
- For a quadratic Markov branching process (QMBP), we show that the decay parameter is equal to the first eigenvalue of a Sturm–Liouville operator associated with the partial differential equation that the generating function of the transition probability satisfies. The proof is based on the spectral properties of the Sturm–Liouville operator. Both the upper and lower bounds of the decay parameter are given explicitly by means of a version of Hardy’s inequality. Two examples are provided to illustrate our results. The important quantity, the Hardy index, which is closely linked to the decay parameter of the QMBP, is deeply investigated and estimated.
Details
- ISSN :
- 14756072 and 00219002
- Database :
- OpenAIRE
- Journal :
- Journal of Applied Probability
- Accession number :
- edsair.doi...........08678467b827a53340a8421eda20de31
- Full Text :
- https://doi.org/10.1017/jpr.2022.91