Back to Search Start Over

Storm characteristics influence nitrogen removal in an urban estuarine environment

Authors :
Anne Margaret H. Smiley
Suzanne P. Thompson
Nathan S. Hall
Michael F. Piehler
Publication Year :
2023
Publisher :
Copernicus GmbH, 2023.

Abstract

Sustaining water quality is an important component of coastal resilience. Floodwaters deliver reactive nitrogen (NOx) to sensitive aquatic systems and can diminish water quality. Coastal habitats in flooded areas can be effective at removing reactive nitrogen through denitrification (DNF). However, less is known about this biogeochemical process in urbanized environments. This study assessed the nitrogen removal capabilities of flooded habitats along an urban estuarine coastline in the upper Neuse River Estuary (NRE), NC, USA under two nitrate concentrations (16.8 µM and 52.3 µM NOx, respectively). We also determined how storm characteristics (e.g., precipitation and wind) affect water column NOx concentrations and consequently DNF by flooded habitats. Continuous flow-through sediment core incubation experiments quantified gas and nutrient fluxes across the sediment-water interface in marsh, swamp forest, undeveloped open space, stormwater pond, and shallow subtidal sediments. All habitats exhibited net DNF. Additionally, all habitats increased DNF rates under elevated nitrate conditions compared to low nitrate. Structured habitats with high sediment organic matter had higher nitrogen removal capacity than unstructured, low sediment organic matter habitats. High precipitation-high wind storm events produced concentrations significantly lower than other types of storms (e.g., low precipitation-high wind, high wind-low precipitation, low wind-low precipitation), which likely results in relatively low DNF rates by flooded habitats and low removal percentages of total dissolved nitrogen loads. These results demonstrate the importance of natural systems to water quality in urbanized coastal areas subject to flooding.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........080b505fefd15f74706f2a16e729a085
Full Text :
https://doi.org/10.5194/egusphere-2023-292