Back to Search Start Over

LRP3, an apolipoprotein receptor that links reelin signalling and APP expression, is affected in Alzheimer's disease

Authors :
Trinidad Mata-Balaguer
Sergio Escamilla
Javier Sáez-Valero
Inmaculada Cuchillo-Ibañez
Inmaculada B. Lopez-Font
Isidro Ferrer
Matthew P. Lennol
Publication Year :
2021
Publisher :
Research Square Platform LLC, 2021.

Abstract

Background. Members of the low-density lipoprotein (LDL) receptor family are involved in endocytosis and in transducing signals, but also in APP (amyloid precursor protein) processing and β-amyloid secretion. ApoER2/LRP8 is a member of this family with key roles in synaptic plasticity in the adult brain. ApoER2 is cleaved after the binding of its ligand, the reelin protein, generating an intracellular domain (ApoER2-ICD) that modulates reelin gene transcription itself. In this work, we have analysed whether ApoER2-ICD is able to regulate the expression of other members of the LDL receptor family. We focused on LRP3, the most unknown member of the LDL receptor family, whose precise physiological role and potential participation in pathological processes such as Alzheimer’s disease (AD) are still unknown.Methods. The effects of full-length ApoER2 and ApoER2-ICD overexpression on protein levels, in presence of recombinant reelin or Ab42 peptide, were evaluated by a microarray, qRT-PCRs and western blots. The expression of LRP3 was analysed in human frontal cortex extracts from AD and non-demented subjects by qRT-PCRs and western blot; and LRP3 interaction with other proteins was assessed by immunoprecipitation. In CHO cells overexpressing LRP3, protein levels of full-length APP and fragments were evaluated by western blots. Results. We have identified that ApoER2 overexpression increases LRP3 expression. Stimulation of ApoER2 signaling by reelin increased LRP3 levels, and the same occurred following ApoER2-ICD overexpression. In human frontal cortex extracts we demonstrate that LRP3 interacts with apolipoprotein E and APP. In extracts from AD subjects, the levels of LRP3 mRNA and protein were lower than those in control subjects. Interestingly, LRP3 transfection in CHO-PS70 cells induced a decrease of full-length APP levels and APP-CTF, and in the supernatant, levels of soluble APP fragments from the amyloidogenic (sAPPa) or non-amyloidogenic (sAPPβ) pathway, as well as Aβ peptides, were drastically reduced respect to mock-transfected cells.Limitations. There is a scarce knowledge of LRP3 physiological function as a neuronal receptor.Conclusion. We describe that LRP3 expression is regulated via ApoER2/reelin signaling, and its levels are affected in AD; similarly to other LDL receptors, LRP3 is involved in APP expression.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........07b3f1bc38cee1075774aff975db30cc
Full Text :
https://doi.org/10.21203/rs.3.rs-220026/v1