Back to Search Start Over

Phoneme recognition using an adaptive supervised manifold learning algorithm

Authors :
Xiaoming Zhao
Shiqing Zhang
Source :
Neural Computing and Applications. 21:1501-1515
Publication Year :
2012
Publisher :
Springer Science and Business Media LLC, 2012.

Abstract

To effectively handle speech data lying on a nonlinear manifold embedded in a high-dimensional acoustic space, in this paper, an adaptive supervised manifold learning algorithm based on locally linear embedding (LLE) for nonlinear dimensionality reduction is proposed to extract the low-dimensional embedded data representations for phoneme recognition. The proposed method aims to make the interclass dissimilarity maximized, while the intraclass dissimilarity minimized in order to promote the discriminating power and generalization ability of the low-dimensional embedded data representations. The performance of the proposed method is compared with five well-known dimensionality reduction methods, i.e., principal component analysis, linear discriminant analysis, isometric mapping (Isomap), LLE as well as the original supervised LLE. Experimental results on three benchmarking speech databases, i.e., the Deterding database, the DARPA TIMIT database, and the ISOLET E-set database, demonstrate that the proposed method obtains promising performance on the phoneme recognition task, outperforming the other used methods.

Details

ISSN :
14333058 and 09410643
Volume :
21
Database :
OpenAIRE
Journal :
Neural Computing and Applications
Accession number :
edsair.doi...........079005e46a22f69abb5eec29f1ae4437