Back to Search Start Over

A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries

Authors :
Shi Xue Dou
Libao Chen
Rui Wen
Xiu Li
An-Min Cao
Xun Xu
Xincheng Hu
Shulei Chou
Lin Zhou
Source :
Journal of Materials Chemistry A. 7:11976-11984
Publication Year :
2019
Publisher :
Royal Society of Chemistry (RSC), 2019.

Abstract

Low-cost Na-ion batteries (SIBs) are a promising alternative to Li-ion batteries (LIBs) for large-scale energy storage systems due to the abundant sodium resources and eco-friendliness. The volumetric changes of sodium anodes during the sodiation/desodiation processes, however, reduce the cycling life of Na-ion batteries. In order to solve the problem, we have used the electrospinning method to successfully fabricate mesoporous S/N-doped carbon nanofibers (S/N-C), which show a high capacity and high-rate capability in a Na-ion battery. The S/N-C nanofibers delivered a high reversible capacity of 552.5 and 355.3 mA h g−1 at 0.1 and 5 A g−1, respectively, because of the high S-doping (27.95%) in the carbon nanofibers. The introduction of N and S in S/N-C nanofibers increases the active sites for Na+ storage and reduces the energy required for Na+ transfer, as confirmed by in situ Raman spectroscopy and density functional theory (DFT) calculations. Moreover, the mesoporous S/N nanofibers are wetted by liquid electrolyte, which facilitates the Na+ transport and increases the rate performance, thus making them a suitable anode material for SIBs and other electrochemical energy storage devices.

Details

ISSN :
20507496 and 20507488
Volume :
7
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........06eac46c185d12c82ab253e88314b5dd