Back to Search Start Over

Fatty Acid Transduction of Nitric Oxide Signaling

Authors :
Yuqing E. Chen
Francisco J. Schopfer
Scott Sweeney
Carlos BatthyƔny
Yiming Lin
Paul R. S. Baker
Alison L. Groeger
Karen E. Iles
Laura M. S. Baker
Marshall H. Long
Steven R. Woodcock
Bruce P. Branchaud
Bruce A. Freeman
Source :
Journal of Biological Chemistry. 280:42464-42475
Publication Year :
2005
Publisher :
Elsevier BV, 2005.

Abstract

Mass spectrometric analysis of human plasma and urine revealed abundant nitrated derivatives of all principal unsaturated fatty acids. Nitrated palmitoleic, oleic, linoleic, linolenic, arachidonic and eicosapentaenoic acids were detected in concert with their nitrohydroxy derivatives. Two nitroalkene derivatives of the most prevalent fatty acid, oleic acid, were synthesized (9- and 10-nitro-9-cis-octadecenoic acid; OA-NO2), structurally characterized and determined to be identical to OA-NO2 found in plasma, red cells, and urine of healthy humans. These regioisomers of OA-NO2 were quantified in clinical samples using 13C isotope dilution. Plasma free and esterified OA-NO2 concentrations were 619 +/- 52 and 302 +/- 369 nm, respectively, and packed red blood cell free and esterified OA-NO2 was 59 +/- 11 and 155 +/- 65 nm. The OA-NO2 concentration of blood is approximately 50% greater than that of nitrated linoleic acid, with the combined free and esterified blood levels of these two fatty acid derivatives exceeding 1 microm. OA-NO2 is a potent ligand for peroxisome proliferator activated receptors at physiological concentrations. CV-1 cells co-transfected with the luciferase gene under peroxisome proliferator-activated receptor (PPAR) response element regulation, in concert with PPARgamma, PPARalpha, or PPARdelta expression plasmids, showed dose-dependent activation of all PPARs by OA-NO2. PPARgamma showed the greatest response, with significant activation at 100 nm, while PPARalpha and PPARdelta were activated at approximately 300 nm OA-NO2. OA-NO2 also induced PPAR gamma-dependent adipogenesis and deoxyglucose uptake in 3T3-L1 preadipocytes at a potency exceeding nitrolinoleic acid and rivaling synthetic thiazo-lidinediones. These data reveal that nitrated fatty acids comprise a class of nitric oxide-derived, receptor-dependent, cell signaling mediators that act within physiological concentration ranges.

Details

ISSN :
00219258
Volume :
280
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi...........06e8a9ad1a0cf4d3e8ed08be85d0d57f
Full Text :
https://doi.org/10.1074/jbc.m504212200