Back to Search Start Over

THE NUMERICAL STRATEGY OF TEMPERED FRACTIONAL DERIVATIVE IN EUROPEAN DOUBLE BARRIER OPTION

Authors :
Behnaz Farnam
Hossein Jafari
Yones Esmaeelzade Aghdam
Shuchun Wang
Chengxuan Xie
Xiaoxiao Xia
Source :
Fractals. 30
Publication Year :
2021
Publisher :
World Scientific Pub Co Pte Ltd, 2021.

Abstract

The usage of Lévy processes involving big moves or jumps over a short period of time has proven to be a successful strategy in financial analysis to capture such rare or extreme events of stock price dynamics. Models that follow the Lévy process are FMLS, Kobol, and CGMY models. Such simulations steadily raise the attention of researchers in science because of the certain best options they produce. Thus, the issue of resolving these three separate styles has gained more interest. In the new paper, we introduce the computational method of such models. At first, the left and right tempered fractional derivative with arbitrary order is approximated by using the basis function of the shifted Chebyshev polynomials of the third kind (SCPTK). In the second point, by implementing finite difference approximation, we get the semi-discrete structure to solve the tempered fractional B–S model (TFBSM). We show that this system is stable and [Formula: see text] is the convergence order. In practice, the processing time and the calculation time per iteration will be reduced by a quickly stabilized system. Then we use SCPTK to approximate the spatial fractional derivative to get the full design. Finally, two numerical examples are provided to illustrate the established system’s reliability and effectiveness.

Details

ISSN :
17936543 and 0218348X
Volume :
30
Database :
OpenAIRE
Journal :
Fractals
Accession number :
edsair.doi...........05e1c1f6d857bd646d8cef3ae14a2727