Back to Search
Start Over
A Trickle Fixed-Bed Recycle Reactor Model for the Fischer-Tropsch Synthesis
- Source :
- International Journal of Chemical Reactor Engineering. 10
- Publication Year :
- 2012
- Publisher :
- Walter de Gruyter GmbH, 2012.
-
Abstract
- A trickle fixed-bed reactor model for the Fischer-Tropsch synthesis applicable to both cobalt and iron catalysts which accounts for gas and liquid recycle is described. A selection of kinetic models for both iron and cobalt catalysts (4 each) is included in the reactor model and their effect on model predictions is compared. While the model is 1-D and reaction rates are determined for quasi-average radial bed temperatures, a correlation is used to account for radial thermal conductivity and radial convective heat transfer. Traditional pressure drop calculations for a packed column were modified with a correlation to account for trickle-flow conditions. In addition to describing the model in detail and showing validation results, this paper presents results of varying fundamental, theoretically-based parameters (i.e. effective diffusivity, Prandtl number, friction factor, etc.). For example, the model predicts that decreasing effective diffusivity from 7.1E-09 to 2.8E-09 m2/s results in a lower maximum temperature (518 K vs. 523 K) and a longer required bed length to achieve 60% conversion of CO (8.5 m vs. 5.7 m). Using molar averages of properties to calculate the Prandtl number for the gas phase (recommended by the authors) results in average bed temperatures up to 10 K higher and reactor lengths 17-45% shorter than assuming a Prandtl number of 0.7. Using the Tallmadge equation to estimate friction losses, as recommended by the authors, results in a pressure drop 40% smaller than using the Ergun equation. Validation of the model was accomplished by matching published full-scale plant data from the SASOL Arge reactors.
Details
- ISSN :
- 15426580
- Volume :
- 10
- Database :
- OpenAIRE
- Journal :
- International Journal of Chemical Reactor Engineering
- Accession number :
- edsair.doi...........04fb6a8a8975811275337f7381c46cfb
- Full Text :
- https://doi.org/10.1515/1542-6580.2840