Back to Search Start Over

Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO2 and temperature in tomato

Authors :
Zhangjian Hu
Junying Shi
Shuxian Feng
Xiaodan Wu
Shujun Shao
Kai Shi
Source :
Horticulture Research. 10
Publication Year :
2022
Publisher :
Oxford University Press (OUP), 2022.

Abstract

The ubiquitous lipid-derived molecules N-acylethanolamines (NAEs) have multiple immune functions in mammals, but their roles and mechanisms in plant defense response during changing environment remain largely unclear. Here, we found that exogenous NAE18:0 and NAE18:2 promoted defense against the necrotrophic pathogen Botrytis cinerea but suppressed defense to the hemi-biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 in tomato. The knocking-down and overexpression function analysis of the pathogen-responsive NAE synthetic gene PHOSPHOLIPASE Dγ (PLDγ) and hydrolytic gene FATTY ACID AMID HYDROLASE 1 (FAAH1) revealed that the NAE pathway is crucial for plant defense response. Using exogenous applications and SA-abolished NahG plants, we unveiled the antagonistic relationship between NAE and SA in plant defense response. Elevated CO2 and temperature significantly changed the NAE pathway in response to pathogens, while inhibition of the NAE pathway led to the alternation of environment-mediated defense variations against Pst DC3000 in tomato, indicating that NAE pathway is associated with plant defense variations in response to elevated CO2 and temperature. The results herein reveal a new function of NAE in plant defense, and its involvement in environment-mediated defense variation in tomato. These findings shed light on the NAE-based plant defense, which may have relevance to crop disease management in future changing climate.

Details

ISSN :
20527276
Volume :
10
Database :
OpenAIRE
Journal :
Horticulture Research
Accession number :
edsair.doi...........04f7aa3e6a4f929c077a7acb54eacc29