Back to Search Start Over

Effect of VZn/VO on Stability, Magnetism, and Electronic Characteristic of Oxygen Ions for Li-Doped ZnO

Authors :
Cong Li
Qingyu Hou
Hongshuai Tao
Yajing Liu
Source :
Journal of Superconductivity and Novel Magnetism. 32:1859-1869
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

The effects of Zn/O vacancy (VZn/VO) and different proportions of Li/VZn on the magnetism of Li-doped ZnO are analyzed through first-principle calculation by using generalized gradient approximation+ U (GGA + U) under density functional theory. Results reveal that Li-doped ZnO with VZn can realize ferromagnetic long-range order and has a Curie temperature above room temperature. Under different proportions of Li/VZn (i.e., 1:1, 1:2, and 2:2) in ZnO (2 × 2 × 4), the doping system containing 2Li/2VZn (Zn28Li2O32) shows the greatest magnetic moment and the smallest differential charge density. These characteristics pave the way for enhancing the magnetic properties of dilute magnetic semiconductors. The oxygen atoms in Zn28Li2O32 show acceptor and donor characteristics and exist in the forms of itinerant electrons (O1−) and local electrons (O2−), which have different effects on Zn28Li2O32 magnetism. The spin-polarization double-exchange effect among the unpaired itinerant electron (O1−) orbit, local electron (O2−) orbit, and unpaired Zn-3d electron orbit is the origin of magnetism for Li-doped ZnO with VZn. By contrast, the doping systems of Li-doped ZnO with VO are nonmagnetic, rendering such systems inapplicable.

Details

ISSN :
15571947 and 15571939
Volume :
32
Database :
OpenAIRE
Journal :
Journal of Superconductivity and Novel Magnetism
Accession number :
edsair.doi...........03ef2c81ec4c4e9c85b6173e5e0f5f53
Full Text :
https://doi.org/10.1007/s10948-019-05156-y