Back to Search Start Over

Thermal evolution of morphological, optical, and photocatalytic properties of Au–Cu2O–CuO nanocomposite thin film

Authors :
Akhilesh Pandey
Kavita Sahu
Satyabrata Mohapatra
Saif A. Khan
Source :
Journal of Materials Science: Materials in Electronics. 32:24058-24068
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Plasmonic nanocomposite thin films find exciting applications in environmental remediation and photovoltaics. We report on thermal annealing driven development of morphology, structure and photocatalytic performance of Au–Cu2O–CuO nanocomposite thin film. Nanocomposite thin film coatings of Au–Cu2O–CuO, prepared by radio frequency (RF) magnetron co-sputtering, were annealed at different temperatures. Thermal annealing driven evolution of morphology of Au–Cu2O–CuO nanocomposite was studied by field emission scanning electron microscopy (FESEM), which revealed significant growth in size of nanostructures from 10 nm to 69 nm upon annealing. X-ray diffraction (XRD) together with Raman studies confirmed the nanocomposite nature of Au–Cu2O–CuO film. UV-visible diffuse reflectance spectroscopy (UV-vis-DRS) studies showed band gap variation from 2.44 eV to 1.8 eV upon annealing at 250 °C. Nanocomposite thin film annealed at 250 °C exhibited superior photocatalytic activity for organic pollutants [methylene blue (MB) and methyl orange (MO)] decomposition. The origins of thermal transformation of morphological, optical and photocatalytic behaviour of the Au–Cu2O–CuO nanocomposite coating are discussed.

Details

ISSN :
1573482X and 09574522
Volume :
32
Database :
OpenAIRE
Journal :
Journal of Materials Science: Materials in Electronics
Accession number :
edsair.doi...........0294f97d0425d8f52a827761360d4858
Full Text :
https://doi.org/10.1007/s10854-021-06868-5