Back to Search Start Over

Towards building a social emotion detection system for online news

Authors :
Jingsheng Lei
Xiaojun Quan
Liu Wenyin
Qing Li
Yanghui Rao
Source :
Future Generation Computer Systems. 37:438-448
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

Social emotion detection of online users has become an important task for mining public opinions. Social emotion detection aims at predicting the readers’ emotions evoked by news articles, tweets, etc. In this article, we focus on building a social emotion detection system for online news. The system is built based on the modules of document selection, Part-of-speech (POS) tagging, and social emotion lexicon generation. Empirical studies are extensively conducted on a large scale real-world collection of news articles. Experiments show that the document selection algorithm has a positive effect on the social emotion detection. The system performs better with the words and POS combination compared to a feature set consisting only of words. POS is also useful to detect emotion ambiguity of words and the context dependence of their sentiment orientations. Furthermore, the proposed method of generating the lexicon outperforms the baselines in terms of social emotion prediction.

Details

ISSN :
0167739X
Volume :
37
Database :
OpenAIRE
Journal :
Future Generation Computer Systems
Accession number :
edsair.doi...........027fa9e0c22e992906aa2b3a9d9ca199