Back to Search Start Over

Differential Oocyte-Specific Expression of Cre Recombinase Activity in GDF-9-iCre, Zp3cre, and Msx2Cre Transgenic Mice1

Authors :
Xueping Xu
Zi-Jian Lan
Austin J. Cooney
Source :
Biology of Reproduction. 71:1469-1474
Publication Year :
2004
Publisher :
Oxford University Press (OUP), 2004.

Abstract

Oocyte-specific deletion of ovarian genes using Cre/loxP technology provides an excellent tool to understand their physiological roles during folliculogenesis, oogenesis, and preimplantation embryonic development. We have generated a transgenic mouse line expressing improved Cre recombinase (iCre) driven by the mouse growth differentiation factor-9 (GDF-9) promoter. The resulting transgenic mouse line was named GDF-9-iCre mice. Using the floxed ROSA reporter mice, we found that Cre recombinase was expressed in postnatal ovaries, but not in heart, liver, spleen, kidney, and brain. Within the ovary, the Cre recombinase was exclusively expressed in the oocytes of primordial follicles and follicles at later developmental stages. The expression of iCre of GDF-9-iCre mice was shown to be earlier than the Cre expression of Zp3Cre and Msx2Cre mice, in which the Cre gene is driven by zona pellucida protein 3 (Zp3) promoter and a homeobox gene Msx2 promoter, respectively, in the postnatal ovary. Breeding wild-type males with heterozygous floxed germ cell nuclear factor (GCNF) females carrying the GDF-9-iCre transgene did not produce any progeny having the floxed GCNF allele, indicating that complete deletion of the floxed GCNF allele can be achieved in the female germline by GDF-9-iCre mice. These results suggest that GDF-9-iCre mouse line provides an excellent genetic tool for understanding functions of oocyte-expressing genes involved in folliculogenesis, oogenesis, and early embryonic development. Comparison of the ontogeny of the Cre activities of GDF-9-iCre, Zp3Cre, and Msx2Cre transgenic mice shows there is sequential Cre activity of the three transgenes that will allow inactivation of a target gene at different points in folliculogenesis.

Details

ISSN :
15297268 and 00063363
Volume :
71
Database :
OpenAIRE
Journal :
Biology of Reproduction
Accession number :
edsair.doi...........02603eaec7723ee3408ae868eb47e8d4