Back to Search
Start Over
Algorithm for the application of automatic driving technology and predicting the trajectory of movement
- Publication Year :
- 2021
- Publisher :
- СанкÑ-ÐеÑеÑбÑÑгÑкий полиÑÐµÑ Ð½Ð¸ÑеÑкий ÑнивеÑÑиÑÐµÑ ÐеÑÑа Ðеликого, 2021.
-
Abstract
- ÐвалиÑикаÑÐ¸Ð¾Ð½Ð½Ð°Ñ ÑабоÑа на ÑемÑ: «ÐлгоÑиÑм пÑÐ¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ ÑÐµÑ Ð½Ð¸ÐºÐ¸ Ð²Ð¾Ð¶Ð´ÐµÐ½Ð¸Ñ Ð¸ пÑогнозиÑÐ¾Ð²Ð°Ð½Ð¸Ñ ÑÑаекÑоÑии движениÑ». РнаÑÑном пÑоекÑе оÑÑажаеÑÑÑ Ð¿Ñименение алгоÑиÑмов компÑÑÑеÑной ÑиÑÑÐµÐ¼Ñ Ð·ÑÐµÐ½Ð¸Ñ Ð¸ подÑаздел иÑкÑÑÑÑвенного инÑеллекÑа â маÑинное обÑÑение. ÐÑ Ð¿ÑÐ¸Ð¼ÐµÐ½ÐµÐ½Ð¸Ñ Ð·Ð°ÐºÐ»ÑÑаеÑÑÑ Ð² ÑÑÑановлении ÑакÑоÑов Ñ ÑелÑÑ Ð¸ÑполÑÐ·Ð¾Ð²Ð°Ð½Ð¸Ñ Ð±ÐµÑпилоÑнÑÑ Ð°Ð²Ñомобилей или дÑÑÐ³Ð¸Ñ ÑÑанÑпоÑÑнÑÑ ÑÑедÑÑÐ²Ð°Ñ Ð±ÐµÐ· водиÑелÑ. ÐÑобе внимание бÑло Ñделено Ñаким вопÑоÑам, как обÑабоÑка видеоконÑенÑа. ЭÑо ÑÑебÑеÑÑÑ Ð´Ð»Ñ Ð¿ÑинÑÑÐ¸Ñ Ð´Ð°Ð½Ð½ÑÑ Ð¾ внеÑней ÑÑеде. ЭÑо даÑÑ Ð²Ð¾Ð·Ð¼Ð¾Ð¶Ð½Ð¾ÑÑÑ Ð² бÑдÑÑем ÑеÑиÑÑ Ð²Ð¾Ð¿ÑоÑÑ Ð¾Ð± ÑпÑавлÑемÑÑ Ð¼Ð°Ð½ÐµÐ²ÑÐ°Ñ Ð°Ð²ÑомобилÑ. Создание полноÑенной ÑиÑÑÐµÐ¼Ñ Ð·ÑÐµÐ½Ð¸Ñ Ð´Ð»Ñ Ð°Ð²ÑÐ¾Ð¼Ð¾Ð±Ð¸Ð»Ñ Ð±ÐµÐ· водиÑелÑ, благодаÑÑ ÐºÐ¾ÑоÑой возможно легкое воÑпÑиÑÑие окÑÑжаÑÑей ÑÑÐµÐ´Ñ Ð¸Ð· видеопоÑока â ÑÐµÐ»Ñ Ð´Ð°Ð½Ð½Ð¾Ð¹ квалиÑикаÑионной ÑабоÑÑ. ÐÑинÑÑие кадÑов из видеопоÑока на Ð²Ñ Ð¾Ð´Ðµ. ÐÑи ÑÑом, локализаÑÐ¸Ñ ÐºÐ°Ð¼ÐµÑÑ Ð´Ð¾Ð»Ð¶Ð½Ð° бÑÑÑ Ð² пеÑедней ÑаÑÑи ÑÑанÑпоÑÑного ÑÑедÑÑва, оÑиенÑаÑÐ¸Ñ â впеÑед, ÑмоÑÑÑ Ð½Ð° меÑÑо пеÑед ÑÑанÑпоÑÑнÑм ÑÑедÑÑвом. Ðа вÑÑ Ð¾Ð´Ðµ ÑиÑÑема бÑÐ´ÐµÑ Ð¸Ð½ÑоÑмиÑоваÑÑ Ð´Ð°Ð½Ð½Ñе ÑÑаÑÑÑ â ÑазмеÑкÑ. Также ÑаÑÑмаÑÑиваеÑÑÑ Ð²Ð°ÑÐ¸Ð°Ð½Ñ ÑÐ¾Ð·Ð´Ð°Ð½Ð¸Ñ ÑÑаекÑоÑии Ð´Ð²Ð¸Ð¶ÐµÐ½Ð¸Ñ Ð¿Ñи иÑÑледовании ÑазмеÑеннÑÑ Ð´Ð°Ð½Ð½ÑÑ ÑоÑÑе. Ð ÑезÑлÑÑаÑе ÑабоÑÑ Ð±Ñли ÑаÑÑмоÑÑÐµÐ½Ñ Ð²Ð¸Ð´Ñ Ð¸ ÑпоÑÐ¾Ð±Ñ Ð¾Ð±ÑабоÑки изобÑажений Ñ ÑелÑÑ Ð¿Ð¾Ð´Ð±Ð¾Ñа ÑÑÑаÑегии компÑÑÑеÑного зÑÐµÐ½Ð¸Ñ Ð¸ маÑинного обÑÑениÑ. ÐÑенка и каÑеÑÑво алгоÑиÑмов пÑовеÑÑлоÑÑ Ð½Ð° видеоÑÐ°Ð¹Ð»Ð°Ñ , на коÑоÑÑе запиÑана ÑÑемка гоноÑной ÑÑаÑÑÑ. ÐапиÑаннÑе даннÑе имеÑÑ Ð²ÑÑокое ÑазÑеÑение, ÑÑо позволÑÐµÑ Ð´ÐµÑалÑно ÑаÑÑмоÑÑеÑÑ Ð²Ñе меÑки и дÑÑгие немаловажнÑе моменÑÑ. ÐеÑки, коÑоÑÑе иÑполÑзÑÑÑÑÑ Ð´Ð»Ñ Ð²ÑÐ´ÐµÐ»ÐµÐ½Ð¸Ñ ÑÑаÑÑÑ, доÑÑаÑоÑно Ñ Ð¾ÑоÑо оÑобÑажаÑÑ Ð´Ð¾ÑÐ¾Ð³Ñ Ð´Ð°Ð¶Ðµ пÑи ÑамÑÑ Ð½ÐµÐ±Ð»Ð°Ð³Ð¾Ð¿ÑиÑÑнÑÑ ÐºÐ»Ð¸Ð¼Ð°ÑиÑеÑÐºÐ¸Ñ ÑÑловиÑÑ . ÐÑ Ð¼Ð¾Ð¶Ð½Ð¾ иÑполÑзоваÑÑ Ð² поÑледÑÑÑÐ¸Ñ Ð¿ÑоÑеÑÑÐ°Ñ ÑиÑÑем зÑÐµÐ½Ð¸Ñ Ð² беÑпилоÑнÑÑ ÑÑедÑÑÐ²Ð°Ñ Ð¿ÐµÑедвижениÑ.<br />Qualification work on the topic: "Algorithm for the application of driving techniques and predicting the trajectory of movement". The scientific project reflects the use of algorithms for a computer vision system and a subsection of artificial intelligence - machine learning. Their application is to establish factors for the use of unmanned vehicles or other vehicles without a driver. Particular attention was paid to issues such as video content processing. This is required for the acceptance of data on the external environment. This will provide an opportunity in the future to solve questions about the controlled maneuvers of the car. The creation of a full-fledged vision system for a car without a driver, thanks to which it is possible to easily perceive the environment from a video stream, is the goal of this qualification work. Receiving frames from a video stream at the input. In this case, the localization of the camera should be in front of the vehicle, orientation - forward, looking at the place in front of the vehicle. At the output, the system will inform the track data - marking. We also consider the option of creating a trajectory when examining the marked highway data. As a result of the work, the types and methods of image processing were considered in order to select a strategy for computer vision and machine learning. The evaluation and quality of the algorithms was checked on video files on which the shooting of the race track was recorded. The recorded data has a high resolution, which allows you to view in detail all the marks and other important points. The marks that are used to highlight the road show the road reasonably well even under the most unfavorable climatic conditions. They can be used in subsequent processes of vision systems in unmanned vehicles.
Details
- Language :
- Russian
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........020c76e48070b7aab95051bd4e9f274b
- Full Text :
- https://doi.org/10.18720/spbpu/3/2021/vr/vr21-823