Back to Search Start Over

Research on imbalance machine learning methods for MR$$T_1$$WI soft tissue sarcoma data

Authors :
Xuanxuan Liu
Li Guo
Hexiang Wang
Jia Guo
Shifeng Yang
Lisha Duan
Source :
BMC Medical Imaging. 22
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

Background Soft tissue sarcoma is a rare and highly heterogeneous tumor in clinical practice. Pathological grading of the soft tissue sarcoma is a key factor in patient prognosis and treatment planning while the clinical data of soft tissue sarcoma are imbalanced. In this paper, we propose an effective solution to find the optimal imbalance machine learning model for predicting the classification of soft tissue sarcoma data. Methods In this paper, a large number of features are first obtained based on $$T_1$$ T 1 WI images using the radiomics methods.Then, we explore the methods of feature selection, sampling and classification, get 17 imbalance machine learning models based on the above features and performed extensive experiments to classify imbalanced soft tissue sarcoma data. Meanwhile, we used another dataset splitting method as well, which could improve the classification performance and verify the validity of the models. Results The experimental results show that the combination of extremely randomized trees (ERT) classification algorithm using SMOTETomek and the recursive feature elimination technique (RFE) performs best compared to other methods. The accuracy of RFE+STT+ERT is 81.57% , which is close to the accuracy of biopsy, and the accuracy is 95.69% when using another dataset splitting method. Conclusion Preoperative predicting pathological grade of soft tissue sarcoma in an accurate and noninvasive manner is essential. Our proposed machine learning method (RFE+STT+ERT) can make a positive contribution to solving the imbalanced data classification problem, which can favorably support the development of personalized treatment plans for soft tissue sarcoma patients.

Details

ISSN :
14712342
Volume :
22
Database :
OpenAIRE
Journal :
BMC Medical Imaging
Accession number :
edsair.doi...........015955258a549e7a8ce240897cb00a4d
Full Text :
https://doi.org/10.1186/s12880-022-00876-5