Back to Search
Start Over
Magneto-optical spectroscopy of spin injection and spin relaxation in ZnMnSe/ZnCdSe and GaMnN/InGaN spin light-emitting structures
- Source :
- physica status solidi (a). 204:159-173
- Publication Year :
- 2007
- Publisher :
- Wiley, 2007.
-
Abstract
- In this paper we review our recent results from in-depth investigations of physical mechanisms which govern efficiency of several processes important for future spintronic devises, such as spin alignment within diluted magnetic semiconductors (DMS), spin injection from DMS to non-magnetic spin detectors (SDs) and also spin depolarization within SD. Spin-injection structures based on II-VIs (e.g. ZnMnSe/Zn(Cd)Se) and III-Vs (e.g. GaMnN/Ga(In)N) were studied as model cases. Exciton spin relaxation within ZnMnSe DMS, important for spin alignment, was found to critically depend on Zeeman splitting of the exciton states and is largely facilitated by involvement of longitudinal optical (LO) phonons. Optical spin injection in ZnMnSe/Zn(Cd)Se was shown to be governed by (i) commonly believed tunneling of individual carriers or excitons and (ii) energy transfer via localized excitons and spatially separated localized electron-hole pairs (LEHP) located within DMS. Unexpectedly, the latter mechanism is in fact found to dominate spin injections. We shall also show that spin depolarization in the studied structures is essentially determined by efficient spin relaxation within non-magnetic spin detectors, which is an important factor limiting efficiency of spin detection. Detailed physical mechanisms leading to efficient spin depolarization will be discussed.
- Subjects :
- Zeeman effect
Spintronics
Condensed matter physics
Spin polarization
Chemistry
Exciton
Energy level splitting
Surfaces and Interfaces
Magnetic semiconductor
Zero field splitting
Condensed Matter Physics
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Condensed Matter::Materials Science
symbols.namesake
Materials Chemistry
symbols
Condensed Matter::Strongly Correlated Electrons
Electrical and Electronic Engineering
Spin-½
Subjects
Details
- ISSN :
- 18626319 and 18626300
- Volume :
- 204
- Database :
- OpenAIRE
- Journal :
- physica status solidi (a)
- Accession number :
- edsair.doi...........00fc7097bb107675bac50885c08d92ab
- Full Text :
- https://doi.org/10.1002/pssa.200673020