Back to Search
Start Over
Permanent-Magnet Temperature Distribution Estimation in Permanent-Magnet Synchronous Machines Using Back Electromotive Force Harmonics
- Source :
- IEEE Transactions on Industry Applications. 52:3093-3103
- Publication Year :
- 2016
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2016.
-
Abstract
- Permanent magnet (PM) temperature measurement/estimation in permanent-magnet synchronous machines (PMSMs) is convenient for both torque control and monitoring purposes. Most of the existing methods provide an averaged/punctual temperature. However, PM temperature distribution is not uniform, which can have unexpected adverse effects such as reduced accuracy estimating the torque produced by the machine or local demagnetization e.g., due to hot spots. PM temperature distribution can be measured or estimated. Inner and outer PM surfaces are not visible once the machine is assembled. Therefore, measurement of the PM temperature distribution cannot be realized by visual means. An array of temperature sensors attached to the PM can be used in this case. While this is technically feasible, it is unaffordable in commercial products due to cost and robustness issues. Alternatively, the PM temperature distribution can be estimated. This paper analyzes the use of back electromotive force (BEMF) harmonics to estimate the differential temperature in the PM of a PMSM, i.e., the temperature difference between the hottest and coldest parts of the magnets. Combined with average PM temperature estimation methods, this information can be used to estimate the PM temperature spatial distribution. The proposed method has been developed on an empirical basis.
- Subjects :
- 010302 applied physics
Engineering
business.industry
020208 electrical & electronic engineering
Demagnetizing field
Electrical engineering
02 engineering and technology
Counter-electromotive force
01 natural sciences
Temperature measurement
Industrial and Manufacturing Engineering
Automotive engineering
Control and Systems Engineering
Robustness (computer science)
Harmonics
Magnet
0103 physical sciences
0202 electrical engineering, electronic engineering, information engineering
Torque
Temperature difference
Electrical and Electronic Engineering
business
Subjects
Details
- ISSN :
- 19399367 and 00939994
- Volume :
- 52
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Industry Applications
- Accession number :
- edsair.doi...........00f68e7ef6d0716e143ace199f4c7004