Back to Search Start Over

Uso do algoritmo genético no planejamento florestal considerando seus operadores de seleção

Authors :
Lucas Rezende Gomide
Julio Eduardo Arce
Arinei Carlos Lindbeck da Silva
Source :
Cerne, Vol 15, Iss 4, Pp 460-467 (2009)
Publication Year :
2009
Publisher :
Universidade Federal de Lavras, 2009.

Abstract

This study tested and analyzed four selection operators (Elitist, Tournament, Roulette wheels and Bi-classist) and defined the best one. The forest planning problem test was based on the Johnson & Schermann (1977) type I model encompassing 52 eucalyptus stands, where 254 forest management prescriptions were created. The genetic algorithm (GA) was built in Visual Basic® Microsoft® and its sets of parameters were: initial population (300), crossover (10%), mutation (10%) and replacement (60%). The measuring variables were: minimum, median and maximum values; coefficient of variation for the fitness and the processing time. It was also applied the nonparametric Kruskal-Wallis test with 5% of the probability to check the differences among selection operators of 30 samples. The results showed that the selection operators presented different efficiency and effectiveness according to Kruskal-Wallis test for 5% of probability. The decreasing sequence of efficiency was: Roulette wheels, Tournament, Elitist and Bi-classist. The lower percentage deviations matched from the exact solution were: 2.75% (Elitist), 2.15% (Tournament), 0.90% (Roulette wheels) and 2.40% (Bi-classist). The best selection operator tested was the one that follows the Roulette wheels.

Details

Language :
English
ISSN :
01047760
Volume :
15
Issue :
4
Database :
OpenAIRE
Journal :
Cerne
Accession number :
edsair.doajarticles..ed750c00a82babc8b24c43b2b854a790