Back to Search
Start Over
Production of negative hydrogen ions in a magnetized plasma column
- Source :
- 61st Annual Meeting of the APS Division of Plasma Physics, 61st Annual Meeting of the APS Division of Plasma Physics, Oct 2019, Fort Lauderdale, United States
- Publication Year :
- 2019
- Publisher :
- HAL CCSD, 2019.
-
Abstract
- International audience; A new generation of neutral beam systems will be required in future fusion reactors, such as DEMO, able to deliver high power (up to 50 MW) with high neutral energy (\textgreater 1 MeV). Negative ions have a higher neutralization fraction (compared to positive ions) in a gas cell at energies greater than 50 keV. They are generated mostly on cesiated metal surfaces inside a magnetized high brightness plasma source but cesium consumption must be limited to a minimum in a fusion power plant to reduce the maintenance of the source. There is hence a strong research focus to optimize the production of negative ions via dissociative attachment of the gas molecule inside the source volume. To achieve this, one must generate a plasma with a hot (\textasciitilde 10 eV) and cold (\textasciitilde 1 eV) electron temperature regions and confine the electrons magnetically. In this work, we will analyse the properties of a hydrogen plasma produced in a thin (20 cm radius and 1.8 m length) magnetized (\textasciitilde 150G) plasma column powered by a helicon discharge [I. Furno et al., EPJ Web of Conferences \textbf{157}, 03014 (2017)]. The numerical simulations are performed with a 2.5D Particle-in-Cell algorithm with Monte-Carlo Collisions (PIC-MCC) [G. Fubiani et al., New J. Phys. \textbf{19}, 015002 (2017)]. The model will be compared to experiments. *Work carried out within the framework of the EUROfusion Consortium. Euratom Grant Agreement No. 633053.
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- 61st Annual Meeting of the APS Division of Plasma Physics, 61st Annual Meeting of the APS Division of Plasma Physics, Oct 2019, Fort Lauderdale, United States
- Accession number :
- edsair.dedup.wf.001..fc970988587f2af649d90571e5766d92