Back to Search Start Over

Multi-objective Bayesian optimization with reference point: sequential and parallel versions

Authors :
Gaudrie, David
Le Riche, Rodolphe
Picheny, Victor
Enaux, Benoit
Herbert, Vincent
Rodolphe, Le Riche
École des Mines de Saint-Étienne (Mines Saint-Étienne MSE)
Institut Mines-Télécom [Paris] (IMT)
Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS)
Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Institut Henri Fayol (FAYOL-ENSMSE)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Département Génie mathématique et industriel (FAYOL-ENSMSE)
Ecole Nationale Supérieure des Mines de St Etienne-Institut Henri Fayol
Ecole Nationale Supérieure des Mines de St Etienne
Centre National de la Recherche Scientifique (CNRS)
Institut National de la Recherche Agronomique (INRA)
PROWLER.io, 72 Hills Road, Cambridge
PSA Peugeot - Citroën (PSA)
PSA Peugeot Citroën (PSA)
Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol
Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)
Source :
Mascot-Num annual conference, Mascot-Num annual conference, Mar 2019, Rueil-Malmaison, France
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; Bayesian algorithms (e.g., EGO, GPareto) are a popular approach to the mono and multi-objective optimization of costly functions. Despite the gains provided by the Gaussian models, convergence to the problem solutions remains out of reach when the number of variables and / or the number of objective functions increase.In this presentation, we show how with Gaussian processes it is possible to restrict ambitions in order to recover problems that can be solved.With strong restrictions on the number of objective function evaluations, it is often only feasible to target a specific point of the Pareto front. We describe the mEI criterion to do so. When no such point is known a priori, we propose to target the Pareto front center. Thus, we define this center, explain how to estimate it and how to detect convergence to it.Once the center of the Pareto front has been found, we propose to enlarge the search for Pareto optimal solutions around it in a manner that is compatible with the remaining computational budget. To achieve this, virtual Bayesian optimizations are carried out on the Gaussian processes.Finally, we discuss how to parallelize the resulting multi-objective Bayesian optimization algorithm.

Details

Language :
English
Database :
OpenAIRE
Journal :
Mascot-Num annual conference, Mascot-Num annual conference, Mar 2019, Rueil-Malmaison, France
Accession number :
edsair.dedup.wf.001..fabcb8a0b7622f14dffe7e96d3536a87